

X# from Scratch

Eric Selje
Salty Dog Solutions, LLC

 @EricSelje
www.SaltyDogLLC.Com

eric@saltydogllc.com

X# is on your radar but you're a little unsure how to get started? This whitepaper will walk you
through building your first X# application. We’ll take a sample FoxPro application and convert it
piece by piece to X# and demonstrate transferring our existing VFP skills to X#'s paradigms.

You will learn:

• How to take your first steps with X#
• How to access DBF files in X#
• How to do classes, forms, and more in X#

X# from Scratch

Copyright 2020, Eric Selje Page 2 of 33

Introduction
In 2019 at Southwest Fox, I presented a high-level overview of X#, covering its origins and
evolution up to its present state. X# is a very stable and mature product at this point, and
perfectly capable of creating sophisticated datacentric Windows applications, or being the
middleware for web-based ASP.Net apps. If you haven’t read my whitepaper from that
session, I think it’d give you a good foundation. It’s at http://saltydogllc.com/wp-
content/uploads/SELJE-Look-at-X-Sharp.pdf.

While X# has been around for years, what’s newer and exciting in X# is its support for the
Visual FoxPro dialect. This support makes learning X# from a Visual FoxPro developer’s
perspective as easy as, say, learning Spanish once you know Italian (I’m speculating here – I
know neither!) There’s a lot in common and many cognates so you should be able to
translate your skills to a product that is still supported and takes advantage of the .Net
Framework rather than the old Win32 classes.

Putting together this session, the most difficulties I had were not with the language itself
but navigating the differences between Visual FoxPro’s development environment and
Visual Studio’s. If you’re experienced with Visual Studio that will be one less barrier for you
to hurdle. And if you’re experienced with developing C# applications in Visual Studio, you’ll
probably find X# to be extremely easy to pick up.

Aside: If you’re wondering, “Why should I even learn X# if I’m an experienced C#
developer,” it’s because X# adds DBF handling capabilities natively into the language. You
can create data handling classes in X# that are referenced by your existing C# classes.

Let’s get started! In this session we’re going to start with what we already know – a Visual
FoxPro application that I put together. It’s not a real functioning application because I
wanted an example that was small enough to translate
but also included a lot of the features that we use in
FoxPro and will want to use in X# as well.

Our Sample Application
The original FoxPro app is a simple ToDo list manager,
FoxToDos. If it looks familiar it’s because I borrowed the
UI heavily from Rick Strahl’s Vue session. [Thanks Rick!]
I even used the same DBF free table that he used
because his To Do list is much, much cooler than mine.

You can grab the source code for FoxToDos at my
GitHub account, https://github.com/eselje/FoxToDos.

Under the covers, our application consists of the parts
shown here.

Figure 1: FoxToDos

http://saltydogllc.com/wp-content/uploads/SELJE-Look-at-X-Sharp.pdf
http://saltydogllc.com/wp-content/uploads/SELJE-Look-at-X-Sharp.pdf
https://github.com/eselje/FoxToDos

X# from Scratch

Copyright 2020, Eric Selje Page 3 of 33

FoxToDos was not based on any application framework, so it’s simpler and less robust than
any real application would ever be. It contains (in order):

• ToDos.dbf, the free
table with our tasks.

• ToDos.scx, a form
that serves as the user
interface and includes a grid
that contains one custom
control, cntToDo.

• ToDos.frx, a simple,
wizard-generated report for
those that like their tasks on
paper.

• ToDoUIClasses.vcx, a
visual class library , that has
the cntToDo control we use
in the grid on our form.

• ToDoClasses.prg
contains our non-visual
business objects. while has
one user interface control,
cntToDo, for presenting
each task on the form
cohesively. Lastly, we have a
simple wizard-generated
report Converting these to
X# should be enough to give
us a good feel for what the
experience is like.

• ToDoMain.prg. A
simple startup program that
gets us going.

Figure 2: FoxToDos Project Structure

X# from Scratch

Copyright 2020, Eric Selje Page 4 of 33

Conversion Strategy
The steps we’re going to follow to convert this Visual FoxPro application to X# is:

1. Create a new solution in Visual Studio

2. Rewrite the classes in ToDoClasses.prg as X# classes

3. Unit test those business objects inside of Visual Studio

4. Create a form in Visual Studio that uses those business objects to interact with the
database, and also contains the equivalent of our user-interface composite control.

5. Create an application that has code to setup, run our form, and shutdown.

6. Look at possibilities for creating a report to output the tasks.

The Development Environment
For developing in X#, you have three choices:

1. Use any editor you like (ahem, VI), and compile using the command-line compiler.
I’ll leave it to the reader to explore this option.

2. XIDE, the X# integrated development environment that may be downloaded along
with the rest of X#. XIDE is a perfectly serviceable environment and has a lot in
common with Visual FoxPro’s IDE. It’s written in X# itself, so it provides a dramatic
example of what the language can do in the right hands.

3. Visual Studio, either the Professional (ie paid) or Community (ie free) Edition. The
big advantage of Visual Studio is that it’s used by a lot of developers all over the
world, so it’s well-supported by its developer and the community. It has a ton of
features but in my experience it’s also a bit of a dog performance-wise and is a
resource hog. It’s a hog and a dog –a hot dog if you will. (If you laughed at that joke,
shoot me an email and I’ll buy you a drink the next time I see you.)

Visual Studio Professional 2017 is the environment I’ll be using for this session. If you’re
not familiar with Visual Studio, the X# Help File has an introduction on using X# in Visual
Studio.

Create a New Solution
In Visual Studio’s parlance, a “Solution” is the main structure for an application. It’s a
collection of Projects, which are the main work units. It’s good practice to put business
objects in their own Project and keep user interface elements in their own separate Project,
because then the business objects could be separated and re-used (i.e. “referenced”) in
multiple Solutions.

X# from Scratch

Copyright 2020, Eric Selje Page 5 of 33

To create a new Solution from scratch, choose File, New, Project from the menu. The dialog
lets you specify the name of the Solution that will contain your new Project, and will create
the solution for you. (If you wanted to create a new project as part of an existing Solution,
you must open that Solution, and choose Add, New Project. See Figure 4).

Because we’ve installed X# already (an exercise left to the reader, but it’s a straightforward
download and install from http://www.xsharp.info), we have XSharp Templates available
to us.

What do Project Templates do for you?
Project Templates set certain properties (see Figure 4) of the project that are tweaked for
that project type. They may also include code files and other assets that that type of project
will typically use. For example, notice how the Dialect is automatically set to FoxPro after
we create a Project based on the Class Library FoxPro Dialect template. Projects based on

Figure 3: New Project dialog, with interesting Project Templates noted

X# from Scratch

Copyright 2020, Eric Selje Page 6 of 33

this template also contains one barebones PRG library to get us started (Figure 5) , but they
could contain include as much as a complete application framework.

Visual Studio allows developers to create their own Project templates, much like Word and
Excel allow you to create your own templates for documents and spreadsheets.

There are three Project
Templates shown in Figure 3
that are of specific interest to us
as FoxPro developers:

• Class Library FoxPro
Dialect. A project of this
type will have the
FoxPro dialect pre-set in
the General properties
(see Figure 4) and include
a barebones starter class
definition.

• FoxPro Console
Application. This also
sets the dialect to
FoxPro, but also sets the
“Output Type” property
to “Console Application”.
This allows us to create
command line utilities in
a FoxPro dialect with
proper Exit Codes, which
was difficult using Visual
FoxPro. Command line
applications play well
with development
pipelines such as
Jenkins, a Continuous
Integration tool.

• Windows Forms (or
WPF) Application

These aren’t FoxPro-specific,
but we’ll be explore using these
to create the user interface for
our task list.

Figure 4: Project Properties, as set by the Project Templates

X# from Scratch

Copyright 2020, Eric Selje Page 7 of 33

What’s interesting about the starter class from the
template is that it uses syntax that doesn’t really
look like FoxPro’s. The X# dev team has updated its
understanding of VFP syntax now, but I suspect the
templates were written before that was officially
supported. We’ll see the updated syntax used in our
translations later.

Pay extra special attention to the Visual FoxPro
Compatibility / Inherit from Custom Class
setting. If you want your code to behave the way it
does in VFP, you want that set to True. Among other

things, that causes X# to fire an Init() method (which wasn’t a thing in X# before, as they
use Constructor()) and create virtual _access and _assign methods for our “properties” –
more on that later.

The code for the classes we’re going to migrate is in Appendix A, for readability’s sake. You
can download the FoxPro source code from my GitHub repository at
https://github.com/eselje/FoxToDos and the final X# solution at
https://github.com/eselje/XToDos.

This FoxPro class library includes two class definitions:

• ToDo, which manages an individual task, and

• ToDos, which manages a collection of the ToDo objects

Though I could have written this class library in a VCX (Visual Class Library), I chose to do
it in straight code because it makes it easier to illustrate the transition to X#, which doesn’t
have the concept of “Visual Classes” as we know them. All coding is done in text, which is a
huge advantage when it comes to source control because there’s no need for any of the
myriad workarounds that we had to implement in VFP to serialize our binaries. As we’ll see
when we talk about forms, menus, and custom controls, there is a “visual” element to Visual
Studio, but the source code itself is all text.

Disclaimer: Any imperfections or questionable design decisions that you find in this code
may have been purposely included to illustrate some important point. Or they may just be
an error. It’s hard to say.

Figure 5: Starter Code from the Project
Template

https://github.com/eselje/FoxToDos
https://github.com/eselje/XToDos

X# from Scratch

Copyright 2020, Eric Selje Page 8 of 33

Converting Classes

ToDo => XtoDo
We’ll start with the ToDo class, which reads and writes individual tasks to the DBF file.

In FoxPro, we begin defining the class
with

DEFINE CLASS ToDo AS Custom
 Name = "ToDo"
 cId = ""
 oData = .null.
 lNew = .f.
 lSaved = .f.
 lLoaded = .f.
 oException = .null.

in XSharp, we begin with

USING System
USING System.Collections.Generic
USING System.Text

BEGIN NAMESPACE XSharpToDo
 DEFINE CLASS XToDo as Custom
 public id as string
 public title as string
 public descript as string
 public entered as datetime
 public completed as boolean
 private isEditing as boolean

Using
The initial X# using statements are somewhat akin to FoxPro’s set classlib to in that
they tell the program, “Hey I have some code stored somewhere else that I’m maybe going
to use here so make this available to me, and if I make a call to a function that you don’t
recognize it may be in one of these classes.” There’s no requirement that you actually do
use them, but if you refer to them the compiler is going to include them. In other .Net
languages I’ve used, you could remove any unneeded using by right+clicking and
choosing “Remove Unused Usings” (an awkward phrasing, in my opinion), but that doesn’t
seem to work on .prg files so you’ll want to remove any that you don’t use manually to
shrink the size of your codebase.

.Net has a minimalist concept, along the lines of “If you want it, you gotta include it or it’s
not going to be available.” System is the root namespace and includes what we might refer
to as the “Base Classes” in VFP, but not the visual base classes that were included in
_Classes.vcx, but the native data types such as strings, integers, etc. If you didn’t include
System explicitly, you’d have to preface any of the classes that are in system each time you
called them, so Console.Write() would have to be called as System.Console.Write().

Also notice that USING System does NOT include every sub-namespace of System. You
have to explicitly use any library that you want access to. For a complete list of .Net’s native
class libraries, see the (excellent) docs at https://docs.microsoft.com/en-
us/dotnet/standard/class-library-overview.

Begin Namespace
Namespaces aren’t new to FoxPro developers, although we maybe didn’t refer to them as
such. If you created an OLEPUBLIC class in Visual FoxPro, the name of the DLL you created

https://docs.microsoft.com/en-us/dotnet/standard/class-library-overview
https://docs.microsoft.com/en-us/dotnet/standard/class-library-overview

X# from Scratch

Copyright 2020, Eric Selje Page 9 of 33

would be its Namespace. You could then use that class from another program with

CreateObject(“NameSpace.ClassName”).

By specifying the namespace in code with BEGIN NAMESPACE, .Net allows you to spread
the code for classes among multiple files which makes it much easier to manage the source
control. No more conflicts because one developer was refactoring an entire class when you
only wanted to make a minor tweak to another class in the same class library!

The next few lines are very similar. .Net is strictly typed, so when you specify the class
property you must specify the type too. Also, in VFP we have the very powerful SCATTER
and GATHER command, allowing us to use one property, oData in my example, to
dynamically store the field values, while in the X# class we don’t have that yet (UPDATE:
This was released on Sept 20, 2020, in version 2.6, too late for me to implement!), so must
explicitly name the fields.

Properties v. Fields
There is a fundamental difference in .NET classes vs Visual FoxPro classes. In VFP when we
added what we called a “property” to a class, we could immediately assign values to that
property without going through any hoops. This is bad, because there were no checks on
the input at all, and anyone could read the value. We got around that by adding _access and
_assign methods to the properties. The “visibility” of the property (public, protected,
hidden) affected how whether other objects could see the properties, but had no effect on
what values were visible within the class itself.

.Net classes call those “Fields” rather than properties, and their visibility is determined by
whether they’re Public or Private. Public fields are akin to our Properties, but this isn’t
recommended because all the reasons mentioned above.

Properties on a .Net class are the public-facing interface, akin to our _access and _assign,
they have get() and set() methods, which filter the input to the fields or restrict the output.

In order to emulate Visual FoxPro’s class behavior, there’s an option for X# classes to
“Inherit from Custom Class”, which is set to True by default in the FoxPro Project
Templates. Under the covers, this Custom class emulates FoxPro Properties in .NET’s
Fields.

Init() vs Constructor()

FoxPro’s classes all come with an Init() method that accepts parameters . You get exactly
one Init per class and you must code around the possible combinations of parameters that

Best Practice

USE PRIVATE FIELDS AND PUBLIC PROPERTIES

X# from Scratch

Copyright 2020, Eric Selje Page 10 of 33

were sent in. X# classes have a Constructor method, and you can overload them with
different “signatures”: different combinations of parameters, which is awesome.

FoxPro

PROCEDURE Init
LPARAMETERS cId
This.cId = cId
IF EMPTY(cId)
 This.New()
ELSE
 This.Load(cId)
ENDIF
ENDPROC

X#

public FUNCTION Constructor()
// No Parameter. New Task.
 This.New()

public FUNCTION Constructor(cId AS String)
// Parameter. Existing Task
 This.cId = cId
 This.Load(cId)

In the FoxPro dialect, class definition in X# do have an init() method which you can use
exactly like FoxPro’s.

When you create a task object, you either send it the ID of the task, or leave it blank if you
want to create a new task. FoxPro’s init() handles that by inspecting the parameter and
branching based on whether anything was passed in, but X# has the overloaded
constructor that either takes an ID parameter or doesn’t. I find that much more intuitive.

The new() function highlights how similar X# can be to FoxPro, but also showcases the
extra functionality you can get. The code we need to create GUIDs in .NET is available to us
(in this cases, from System which we always include, but we have the entire universe of
.NET libraries available to us and if for some reason we didn’t like this GUID library we
could have referenced some other one instead.)

FoxPro

PROCEDURE New
LOCAL lUsed, oGUID
lUsed = This.OpenToDos()
oGUID = CreateObject("scriptlet.typelib")
SCATTER BLANK NAME This.oData MEMO
This.oData.Id =Strextract(oGUID.GUID, "{", "}")
This.oData.Entered = DATETIME()
This.lNew = .t.
RETURN This.oData

X#
PROCEDURE New
LOCAL lUsed
This.Clear()
VAR g = GUID.NEWGUID()
This.id = g.TOSTRING()
this.entered = DateTime.Now
this.isEditing = true
this.isNew = .t.
RETURN This.oData

Testing our Code
Now that we’ve got a couple of methods written for our X# class, we can check if it has
errors in that time-honored tradition: Does it compile? Hit Ctrl+Shift+B to Build the
solution and the Output window will display any issues it finds. DoubleClicking the row
that has the issue will take you right to that code in the editor, or click on the error code to
take you to a web page that can give you more information about that error.

X# from Scratch

Copyright 2020, Eric Selje Page 11 of 33

Once it compiles without any errors, we want to find a way to make sure it actually works.

Command Window?
We FoxPro developers love to “test” our code by opening the Command Window,
instantiating an instance of our class, and invoking the methods manually. If they didn’t do
what we expected, we’d set a Breakpoint and walk through the code in debug mode.

Visual Studio doesn’t have a Command Window though. If you installed the XIDE
environment you will get something like a Command Window called XSI, the X# Interpreter
(there’s more on XSI in last year’s whitepaper.) Since we are using Visual Studio for this
demonstration, we’ll instead create a quick Console Application that we can use to “test”
our code.

To create the Console Application,
Right+Click on the Solution, choose Add, New
Project (See figure 6), base it on the FoxPro
Console Project template (refer back to
Figure 3), give it a name, add a reference to
the library that we want to test (Figure 7), set
our new project as the Startup project, and
change the code to write our rudimentary
test:

USING System
USING XSharpToDo

FUNCTION Start() AS VOID STRICT
 LOCAL oToDo AS XToDo, cTestId AS String,
cDescript As String
 cTestId = "EDF53AEF-5C29-4DC4-A"
 oToDo = createObject("XToDo")
 IF oToDo.openToDos()
 SET DELETE ON
 SCAN
 Console.WriteLine("{0:00}: ID: {1}, {2}", RECNO(), ToDos.id, ToDos.descript)
// ? RECNO() ToDos.id ToDos.descript
 IF ToDos.Id = cTestId
 cDescript = ToDos.descript
 ENDIF
 ENDSCAN
 ? cTestId +": " + cDescript
 oToDo.Load(cTestId)
 oToDo.closeToDos()
 ELSE

Figure 6: Add project to existing solution

X# from Scratch

Copyright 2020, Eric Selje Page 12 of 33

 ? "Could not open ToDos.dbf"
 ? "Default folder is " + SET("DEFAULT")
 ENDIF
 WAIT
RETURN

This is X# code, but it should look very familiar to you. I threw in a
gratuitous Console.WriteLine to show off some of X#’s extra
functionality, but other than that this is straight VFP code.

After a few rounds of debugging your code (and as an
experienced FoxPro developer you’ll have no difficulty grokking
Visual Studio’s debugger), you should get the expected output in the Output window:

“But wait”, you say, “I see a Command Window right there when I’m running this app and
you just said Visual Studio doesn’t have a Command Window! “

Don’t get too excited about this. This “Command Window” is only available while you’re
actively debugging code, and it doesn’t even understand all of our FoxPro commands, so it’s
not particularly useful (yet).

Figure 7: Add a Reference

Figure 8: The Command Window

X# from Scratch

Copyright 2020, Eric Selje Page 13 of 33

Unit Tests
A better way to test your code is to write unit tests, and in fact true Test-Driven
development would have directed us to write those even before we started coding. But this
isn’t real TDD because a) these aren’t “true” unit tests (they interact with the real
database), and b) we’re just getting around to writing them now. It’s important to
acknowledge when we know what the right thing to do is, and we’re still not doing it.

With FoxPro there is one popular unit testing harness, FoxUnit. It’s a separate install (via
Thor, ideally) and not integrated into the IDE at all.

Visual Studio on the other hand has testing built into the IDE from the ground up, and you
have multiple testing frameworks to choose from. I chose Nunit to demo because it’s very
similar to FoxUnit. In order to create tests, you add a New Project based on the Class
Library with Nunit Testing to your solution (see Figure 3).

Next add a reference to the library we’re testing, XSharpToDo, just like we did with our
rudimentary console testing app, and write a test:

 [Test];
 METHOD getToDo AS VOID STRICT
 VAR oToDos := XSharpToDo.XToDos{}
 VAR oTodo := oToDos.getToDo("EDF53AEF-5C29-4DC4-A")
 VAR cExpected := "EDF53AEF-5C29-4DC4-A"
 Assert.AreEqual(cExpected, oTodo.id, "Did not get the right TODO")
 RETURN

That test now appears in the Test
Explorer. When you run the tests, either
individually or entirely (Ctrl+R, A)
there’s a clear signal whether the test
passed, failed, or hasn’t been
implemented yet. It also indicates how
long the test took to run, which is an
early indicator of the performance of
your methods.

If you’re having difficulty getting the
result you expected from a test, select
Debug Selected Tests in order to stop at
the breakpoints that you’ve
set. That is also when the
Command Window will be
available to you, as well as
Locals and a Watch Window
just like Visual FoxPro.

X# from Scratch

Copyright 2020, Eric Selje Page 14 of 33

Now we know how to add and test methods to our XToDo class, and we can continue
adding the rest of them. The code is straightforward. See Appendix B for the finished X#
code for this test class, which of course may be out of date so go to the repository for the
current test code.

Adding Another Class to our Namespace
In FoxPro we can, and usually do, stick all the classes for a class library in either one .VCX
or one .PRG. The name of our FoxPro project determines the NameSpace of our classes.

In .NET, this is discouraged. Each class in X# should be in its own code file (.PRG) and all of
the classes in the library should be in one Project. This organizational structure makes it
much easier to determine which
class was modified when
examining source code check-
ins, and reduces file conflicts.

To add a new class to the existing Project, right-click on the Project and choose Add, New
Item. You’ll get the Add New Item dialog (Figure 9). This shows the list of Item Templates,
which are similar to Project Templates mentioned before except they only create one file
rather entire projects.

Convention says to name your
new .PRG with the name of the
class you’re creating. The
Namespace will default to the
name of the Project, which is
probably what you want, but
you may change it if you like.
You can have more than one
Namespace in a project.

Side Note: One very frustrating problem I was having, and this is an Nunit problem
and not an X# problem, is that I kept getting this message when trying to run my tests:

I am not the only person having this issue, and the only reliable solution seemed to be
clearing out the Nunit cache (deleting the folder) at

%appdata%\..\Local\Temp\VisualStudioTestExplorerExtensions\<nUnitVersion>

and restarting Visual Studio. I may consider XUnit or MSTest in the future!

Best Practice

PUT EACH CLASS IN ITS OWN CODEFILE

Figure 9: New Item Templates

X# from Scratch

Copyright 2020, Eric Selje Page 15 of 33

The Startup Project
Earlier when we created the Console Project to test our software, we set that to be the
Startup Project. An application must know what to do when you click Start, so somewhere
in your Solution there has to be at least one “Startup Project,” and that Startup Project must
have a class with a method called Start() to get things going for your application. The
Start function is responsible for setting up the environment and global variables, opening
tables, handling incoming arguments, , etc. To set the Startup Project for your Solution,
Right+Click on the Project and choose Set As Startup.

It is possible to set up multiple Startup Projects by right+clicking on the Solution and
choosing Set Startup Projects. This might be useful if you want to, say, fire up an
.ASP Net website when you start your Windows Form application.

The exception is if the Solution is a XAML Project, which we’ll talk about in the next section.

The User Interface
At this point our business logic is converted and tested, but this application does not yet
have a proper user interface (the Console Project notwithstanding). We can choose from
any number of user interfaces for our business classes, e.g. an Angular website or a mobile
phone app, but a Windows Form is going to emulate our existing VFP application closest.

There are two flavors of Windows Forms. The original WinForms at first glance seems to
have a lot in common with Visual FoxPro forms. The design surface looks similar, and there
is a toolbox with a lot of familiar controls like TextBox and CheckBox. But FoxPro forms
were deceptively powerful, allowing you to include controls that were layers upon layers of
composition and inheritance, and WinForms simply cannot match that power. Microsoft
did say at one point that WinForms was not going to make the leap to .Net Core, the
multiplatform version of the .Net framework. They have since walked back on that but the
future for WinForms is less certain than the alternative.

Then there’s the newer, more complex, and more powerful WPF (Windows Presentation
Format) forms. Under the covers it uses an XML dialect called XAML to lay out the interface,
but the commands are written using C# or X#. The idea here is that the UI/UX designers on
your staff can create the forms, and the coders can work on the actual logic. We FoxPro
developers usually do both roles, of course.

Entire books have been written about creating WPF forms, so we can only go into the
shallowest of details here, just enough to emulate our VFP form. I will say that of all the
things I worked on when writing this paper, getting the forms, and particularly the
databinding, working correctly was the most difficult. This isn’t a knock on X# at all, since
it’s not their fault. In fact, the X# devs are working on a utility to convert FoxPro’s forms to
either WPF or WinForms, but it’s not available quite yet. It will be invaluable to getting us
over the hump once it’s released.

X# from Scratch

Copyright 2020, Eric Selje Page 16 of 33

We want to put our user interface in a separate Project from our business classes, but it can
be part of the same Solution. To create this new Project, right+click on the Solution and
choose Add, New Project (see Figure 3). This time we choose XSharp, Windows, WPF
Application as the Project Template. Give the project a name, which becomes the folder
name under the location where the files are stored on disc.

The Project Template for WPF Apps includes a starter file for a WPF form
(WPFWindow1.xaml) which includes a “code-behind” file (WPFWindow1.xaml.prg). It’s
PRG because we chose the XSharp Project Template, so it uses the X# “Core” dialect syntax.
If you want to use VFP syntax you’ll need to modify your Project properties (See Figure 4).

It also includes a start App.xaml file

<Application x:Class="MyWPFApp.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="WPFWindow1.xaml">
 <Application.Resources>
 </Application.Resources>
</Application>

and a code-behind App.xaml.prg which has no code in
it. If you set this new XAML Project to be your Startup
Project, build and run your app, it actually works
(figure 10)! But how did the application know that it
should fire up that form when it began if there isn’t a
Start() method? In XAML, an alternative way to
indicate the starting form is in the StartupURI attribute
of the Application tag in the XAML, which you can see
in our code listing points to WPFWindows1.xaml. Figure 10: Our first XAML app

X# from Scratch

Copyright 2020, Eric Selje Page 17 of 33

This application isn’t particularly powerful though. In fact it does nothing, but notice that
we didn’t have to do READ EVENTS or DO FORM or anything to get basic functionality,
which is something. That’s because the application is an instance of the Application class in
.Net1, which is something VFP never had unless you went with a 3rd party framework.

Adding Controls to our Form
Our sample VFP window has two buttons in the upper right hand corner to Print and Add a
Task. In WPF we cannot simply add a button to a form though.

We must start by first add some type of layout container to our window. These are similar
to FoxPro’s container object, but they have the different types of containers have different
behaviors, and allow is to forego the absolution positioning and anchoring that we are used
to. This makes the layout very flexible, and usable for all kinds of screen resolutions and
devices. Here are some popular ones, but there are many more:

• Canvas: This is the most like a FoxPro container, where you have to position the
objects manually into the space available.

• Grid: Every control you add goes into a subsequent checkerboard row or column.
• StackPanel: Every control you add goes next to or below the previous object,

depending on orientation.
• WrapPanel: Every control you add goes next to the previous one, and wraps around

when the horizontal edge is reached.
• DockPanel: Much like VFPs dockable containers, these get positioned along the

edges, or in the center, of its parent container.
• ToolBarPanel: A subclass of the StackPanel that puts extra controls into an

“Overflow” area if they don’t fit.

You can mix and nest these containers as well. Here’s the code to add the two buttons to a
ToolBarPanel inside of a StackPanel:

 <StackPanel Orientation="Vertical">
 <ToolBarPanel Height="60" Orientation="Horizontal" HorizontalAlignment="Right">
 <Button Background="Transparent" BorderThickness="0">
 <Image Name="imgNew" Source="Images\Ribbon.png" Height="24px" Width="24px"
HorizontalAlignment="Right" Margin="10" ToolTip="Add Task"></Image>
 </Button>
 <Button Background="Transparent" BorderThickness="0">
 <Image Name="imgPrint" Source="Images\Print.png" Height="24px" Width="24px"
HorizontalAlignment="Right" Margin="10" ToolTip="Print To-Do List"></Image>
 </Button>
 </ToolBarPanel>
 </StackPanel>

1 https://docs.microsoft.com/en-us/dotnet/api/system.windows.application?view=netframework-4.7.2

X# from Scratch

Copyright 2020, Eric Selje Page 18 of 33

This may seem a little verbose at first, but it’s pretty straightforward. Intellisense inside of
Visual Studio makes it very easy to add more properties to each control, and you also have
a familiar Properties Pane (figure 11).

Binding Events to Controls
Right now our Add and Print buttons don’t do anything, so
let’s fix that. Because Adding and Printing are events that we
may also want to call from the Window’s menu (if we had
one), and we don’t want to duplicate our efforts, we can create
a “CommandBinding” in our Window. That gives us a central
location to route things through, and also determine if the
event is even doable at any given time (e.g. We can’t paste
unless there’s something in the clipboard, or we can’t print a
task list unless there are tasks to do). Add this code below the
<Window> element:

<Window.CommandBindings>
 <CommandBinding Command="ApplicationCommands.New"
 Executed="NewCommand_Executed"
 CanExecute="NewCommand_CanExecute" />
 <CommandBinding Command="ApplicationCommands.Print"
 Executed="PrintCommand_Executed"
 CanExecute="PrintCommand_CanExecute" />
</Window.CommandBindings>

This collection of Command Bindings gives a name to each of our commands, tells us what
to do when the event gets fired, and whether the event even can be fired. In the Code
Behind of the Window we add those methods (I went with C# for my WPF project, but I
could have chosen X#. There is so little code here that it matters little):

private void NewCommand_CanExecute(object sender, CanExecuteRoutedEventArgs e)
{ e.CanExecute = true; }

private void NewCommand_Executed(object sender, ExecutedRoutedEventArgs e)
 { MessageBox.Show("New Task"); }
private void PrintCommand_CanExecute(object sender, CanExecuteRoutedEventArgs e)
 { e.CanExecute = true; }
private void PrintCommand_Executed(object sender, ExecutedRoutedEventArgs e)
 { MessageBox.Show("Print"); }

We now just need to add one more attribute to each button to wire them up to the
commands:

Command="ApplicationCommands.New"
Command="ApplicationCommands.Print"

Now when we start the application, we see our window, with its two buttons inside of a
ToolBarPanel inside of the StackPanel, we get what we see in Figure 12. Sweet!

Figure 11: Control Properties

X# from Scratch

Copyright 2020, Eric Selje Page 19 of 33

Tying our Business Objects to the Form
We spent all that time creating and testing our business objects, and now it’s time to put
them to use.

1. Add a using XsharpToDo so the window can find our classes

2. Add a property to the class :
XToDos oTasks = new XToDos();

3. Load the data into our object when we instantiate the window:
this.oTasks.Load();

4. Change our commands to call our business object methods:

this.oTasks.New(""); // in the NewCommand_Executed button
this.oTasks.Print(); // in the PrintCommand_Executed button

I’ve highlighted the extra code in Code Listing 1: The Code Behind for our Window . Now clicking
on the New Task button inserts a blank record into the DBF via the business objects!

Figure 12: Our application, improved.

X# from Scratch

Copyright 2020, Eric Selje Page 20 of 33

Creating our Custom Control
In order to emulate our FoxPro form, we’ll need to create a “Custom Control” in XAML that
we’ll put in our grid, much like we did in our original VCX. This sort of control is nearly
impossible in straight WinForms, but isn’t too bad to create in XAML. Here’s what it looks
like, and here’s the code in Code
Listing 2: Our Custom Control in
XAML:

using XSharpToDo;
using XSharp.VFP;

namespace ToDoInterface
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 XToDos oTasks = new XToDos();

 public MainWindow()
 {
 InitializeComponent();
 this.DataContext = this;
 this.oTasks.Load();
 }

 private void NewCommand_CanExecute(object sender, CanExecuteRoutedEventArgs e)
 {
 e.CanExecute = true;
 }
 private void NewCommand_Executed(object sender, ExecutedRoutedEventArgs e)
 {
 // MessageBox.Show("New Task");
 this.oTasks.New("");
 }
 private void PrintCommand_CanExecute(object sender, CanExecuteRoutedEventArgs e)
 {
 e.CanExecute = true;
 }
 private void PrintCommand_Executed(object sender, ExecutedRoutedEventArgs e)
 {
 // MessageBox.Show("Print");
 oTasks.Print();
 }
 }
}

Code Listing 1: The Code Behind for our Window

X# from Scratch

Copyright 2020, Eric Selje Page 21 of 33

Binding Data to Forms
What we need to do is add our custom control into an appropriate grid control and add the
bindings. This whole topic is enough fodder for an entire session, and so I recommend you
find Robert van der Hulst’s session materials on Databinding in X# and take it from there.
He gives the deep dive that this topic deserves, and in an X# context.

The last thing we need to do to make this application run like our VFP application is to wire
the buttons on the custom control to command events. This is done the same way we wired
the Print and Add button to the window itself, but we just need to pass along the ID of the
task that’s clicked on, and then call the appropriate method in our business objects, sending
along that ID to either complete or delete the selected task.

Reports
I’m not aware of any tool that will convert FRX files to a .NET equivalent, though the X#
developers do have that on their wish list. There is a paid product called ReportPro 3 that
has a report designer that looks very similar to FoxPro’s. It has banding, grouping,
summarizing, etc. While it does support DBF files, it does not import FRX files yet.

<UserControl x:Class="ToDoInterface2.cntToDo"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:local="clr-namespace:ToDoInterface2"
 mc:Ignorable="d"
 d:DesignHeight="114" d:DesignWidth="544">
 <DockPanel>
 <Image Source="Images\Ribbon.png" Height="43px" DockPanel.Dock="Left"
Name="imgRibbon" VerticalAlignment="Top" Margin="5 5 0 0" ></Image>
 <WrapPanel Orientation="Horizontal" DockPanel.Dock="Top">
 <TextBox Height="20px" Width="360px" Margin="5 5 25 5"
Name="txtTitle"></TextBox>
 <Image Source="Images\CheckMark.png" Margin="5" Height="20px"
DockPanel.Dock="Top" Name="imgComplete" ></Image>
 <Image Source="Images\Edit.png" Margin="5" Height="20px" DockPanel.Dock="Top"
Name="imgEdit"></Image>
 <Image Source="Images\Delete.png" Margin="5" Height="20px" DockPanel.Dock="Top"
Name="imgDelete" ></Image>
 </WrapPanel>
 <TextBox Margin="5,0,5,15" FontSize="14" Name="edtDescription"/>
 </DockPanel>
</UserControl>

Code Listing 2: Our Custom Control in XAML

X# from Scratch

Copyright 2020, Eric Selje Page 22 of 33

If your data is in a database like SQL Server, MySQL, or really anything except DBF, then
there is a plethora of reporting tools available to you, such as Stonefield Reporting, Telerik
Reports or the open source FastReport [not an endorsement of either one].

For outputting DBF data, I did see chatter on the X# forums about other attempts to work
with FRX reports. One idea was to convert FoxyPreviewer, which is written in FoxPro, to
X# itself. Another idea was to invoke FoxPro’s native runtime from within X# itself. Either
way would require you to retain VFP to design or modify the reports. It turns out FoxPro
was (is) powerful and hard to emulate!

Other Development Considerations

Databases
Besides the familiarity of the FoxPro-like syntax, the other compelling reason to choose X#
as a development tool is its ability to use your existing DBF files, as shown. But X# can use a
myriad of other databases, from SQLite to Oracle. A very popular backend, based on my
perusal of the X# forums, is SQLAnywhere from Sybase. Anything that .NET can access
through its System.Data library, which is vast and powerful, is usable from X#.

Frameworks?
In FoxPro we had a stable of application frameworks that we could choose from to give us a
head start when creating programs from scratch. Products like Mere Mortals, ProMatrix,
and CodeBook were often used. There are currently no application frameworks for X#
based on the FoxPro dialect, but many C# applications frameworks like Oak Leaf’s MM.Net
can be combined with X# business objects easily enough to get you further down the road.

X# from Scratch

Copyright 2020, Eric Selje Page 23 of 33

Source Control
One of the best features when working with a modern IDE like Visual Studio is its
integrated source control. Many developers put in a lot
of work to create utilities that would properly
serialize/deserialize FoxPro’s binaries, and then added
those tools to Thor to create as little friction as possible
to manage source control, but nothing works as
smoothly as the Team Explorer window. From here you
can add, stage, commit to a local repository, and push to
and pull from a remote repository. [Read Rick Borup’s
whitepapers on Git for more information on what all
that means if you need help.] Because there are no
binaries in the code, there’s no need to serialize
anything.

External Libraries and IDE Add-Ons
If you like Thor and (and as a FoxPro dev, you should),
you’re going to love Visual Studio’s equivalents. Thor is
a visual manager that extends FoxPro’s IDE with
utilities like GoFish5, Project Manager, PEMEditor, and
FoxUnit. Visual Studio has the Visual Studio
Marketplace (https://marketplace.visualstudio.com/)
that has hundreds of extensions for Visual Studio.

VFPX is the central source code repository for many of FoxPro’s IDE utilities and additional
class libraries, like FoxCharts and Log4VFP that you can use to embellish your applications.
Nuget is the package manager for Visual Studio. It has thousands of class libraries you can
take advantage of, and most of them are free. Everything from Payment Gateways to Entity
Frameworks to entire Application Frameworks.

Getting Help
If you need assistance while you’re learning X#, the best place to start is www.xsharp.info.
You can easily get there by choosing Help, Xsharp Website from the Visual Studio menu.
There are active user forums on there, and a specific one just
for FoxPro migrators. The core group of developers jump in
quickly to answer questions.

The Help File that comes with the X# download is also quite
good. It will remind you of Visual FoxPro’s help file. You can
find it either on your Start Menu or choose Help, XSharp
Documentation in Visual Studio.

https://marketplace.visualstudio.com/
http://www.xsharp.info/

X# from Scratch

Copyright 2020, Eric Selje Page 24 of 33

X# from Scratch

Copyright 2020, Eric Selje Page 25 of 33

Conclusion
This session barely covers all of the power and awesomeness of Visual Studio and coding in
X# and the .NET Framework. I hope this walkthrough of converting a simple FoxPro app to
X# has been enlightening. In my limited experience I think X# provides a very nice entré
into understanding .NET development. I also think it’s important to get that, though X#
gives you access to FoxPro-like syntax and concepts that give you an anchor into your
development history, you’re not constrained to that – the entire .NET framework is
available to you.

X# is never going to be able to take your existing FoxPro code and just compile it – it will
take effort on your part. But it’s really not that difficult and it will give you the opportunity
to revisit and refactor your code, as well as add robustness through unit tests and
integrated version control.

The FoxPro compatibility has made impressive strides since I wrote the 2019 session. X# is
open source, and while other developers in our community are contributing, the focus of
the core of developers will be the wish list of the people who pay to be members of Friends
of X#. Hey, they have to pay the bills! If you’d like to see development focused on the
FoxPro compatibility features, you will want to support them with a membership.

Credits and Bibliography
Twitter icon from Icons made by Smashicons from www.flaticon.com

https://docs.microsoft.com/en-us/windows/apps/desktop/visual-studio-templates
https://fox.wikis.com/wc.dll?Wiki~GUIDGenerationCode~VB
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-
structs/fields
https://www.youtube.com/watch?v=CniIPEFZ1Oo (Data bindings)
https://www.xsharp.info/itm-help/foxpro-compatibility-list
https://www.wpf-tutorial.com

For an interesting philosophical discussion on the future of Fox-based development in
general: https://support.west-wind.com/Thread5U70W2EQW.wwt

https://www.flaticon.com/authors/smashicons
https://www.flaticon.com/authors/smashicons
https://docs.microsoft.com/en-us/windows/apps/desktop/visual-studio-templates
https://fox.wikis.com/wc.dll?Wiki%7EGUIDGenerationCode%7EVB
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/fields
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/fields
https://www.youtube.com/watch?v=CniIPEFZ1Oo
https://www.xsharp.info/itm-help/foxpro-compatibility-list
https://www.wpf-tutorial.com/
https://support.west-wind.com/Thread5U70W2EQW.wwt

X# from Scratch

Copyright 2020, Eric Selje Page 26 of 33

Appendix A: The Original FoxPro Classes

* Collection of ToDos
DEFINE CLASS Todos AS Custom
 DIMENSION aToDos[1] && Array of ToDo
Objects
 nTodos = 0
 cTableName = "data\ToDos"

 PROCEDURE Init
 SET EXCLUSIVE OFF

 PROCEDURE OpenTodos
 IF NOT USED(This.cTableName)
 USE (This.cTableName)
 ENDIF
 RETURN USED(This.cTableName)

 PROCEDURE Load
 LOCAL n
 This.OpenTodos()
 SET DELETED ON
 COUNT TO This.nToDos
 DIMENSION This.aToDos[This.nToDos]
 n = 1
 SCAN
 This.aToDos[n]=CREATEOBJECT("Todo",
id)
 n = n + 1
 ENDSCAN
 This.CloseTodos()
 RETURN This.nToDos

 PROCEDURE New
 This.nTodos = This.nTodos + 1
 DIMENSION This.aToDos[This.nToDos]
 This.aTodos[This.nTodos] =
CREATEOBJECT("Todo")
 This.aTodos[This.nTodos].Save()
 RETURN This.nToDos

 PROCEDURE CloseToDos
 LPARAMETERS lLeaveOpen
 IF NOT lLeaveOpen
 USE IN SELECT("ToDos")
 ENDIF

 PROCEDURE Complete
 oToDo =CREATEOBJECT("ToDo", ToDos.id)
 oToDo.oData.Completed=.t.
 RETURN oToDo.Save()

 PROCEDURE Delete
 oToDo =CREATEOBJECT("ToDo", ToDos.id)
 RETURN oToDo.Delete()
ENDDEFINE

* Individual ToDo
DEFINE CLASS ToDo AS Custom
 Name = "ToDo"
 cId = ""
 oData = .null.
 lNew = .f.
 lSaved = .f.
 lLoaded = .f.
 oException = .null.

 PROCEDURE Init
 LPARAMETERS cId
 This.cId = cId
 IF EMPTY(cId)
 This.New()
 ELSE
 This.Load(This.cId)
 ENDIF
 ENDPROC

 PROCEDURE New
 lUsed = This.OpenToDos()
 SCATTER BLANK NAME This.oData MEMO
 This.lNew = .t.
 This.CloseTodos(lUsed)
 RETURN This.oData

 PROCEDURE Load
 LPARAMETERS cId
 LOCAL lUsed
 cId = EVL(cId,This.cId)
 IF NOT EMPTY(cId)
 TRY
 lUsed = This.OpenToDos()
 LOCATE FOR id = cId
 IF FOUND()
 SCATTER NAME This.oData
MEMO
 This.cId = cId
 This.lLoaded = .t.
 This.lNew = .f.
 ENDIF
 CATCH TO oEx
 This.oException = oEx
 FINALLY
 This.CloseTodos(lUsed)
 ENDTRY
 ENDIF
 RETURN This.lLoaded

 PROCEDURE Save

X# from Scratch

Copyright 2020, Eric Selje Page 27 of 33

 LOCAL lUsed
 This.lSaved = .F.
 IF This.lLoaded OR This.lNew
 lUsed = This.OpenToDos()
 TRY
 IF This.lNew
* There are many ways to create a GUID,
including calls to CoCreateGUID in
Ole32.dll, but this is easy. From
https://fox.wikis.com/wc.dll?Wiki~GUIDGen
erationCode~VB
 LOCAL oGUID
 oGUID =
CreateObject("scriptlet.typelib")
 This.oData.Id =
Strextract(oGUID.GUID, "{", "}")
 This.oData.Entered = DATETIME()
 INSERT INTO ToDos FROM NAME
This.oData
 This.cId = This.oData.Id
 ELSE
 LOCATE FOR id = This.cId
 GATHER NAME This.oData MEMO
 ENDIF
 This.lSaved = .t.
 This.lNew = .f.
 CATCH TO oEx
 This.oException = oEx
 FINALLY
 This.CloseTodos(lUsed)
 ENDTRY
 ENDIF

 RETURN This.lSaved

 PROCEDURE Delete
 LOCAL lUsed, lReturn
 IF NOT EMPTY(This.cId)
 lUsed = This.OpenToDos()
 LOCATE FOR id = This.cId
 lReturn = FOUND()
 IF lReturn
 DELETE
 ENDIF
 This.CloseTodos(lUsed)
 ENDIF
 RETURN lReturn

 PROCEDURE OpenTodos
 LOCAL lUsed
 lUsed = USED("ToDos")
 IF NOT lUsed
 USE data\ToDos IN 0
 ENDIF
 SELECT ToDos
 RETURN lUsed

 PROCEDURE CloseToDos
 LPARAMETERS lLeaveOpen
 IF NOT lLeaveOpen
 USE IN SELECT("ToDos")
 ENDIF

ENDDEFINE && ToDo

Go to https://github.com/eselje/FoxToDos for complete and up-to-date source code

https://github.com/eselje/FoxToDos

X# from Scratch

Copyright 2020, Eric Selje Page 28 of 33

cntToDo Visual Class – in Code

*-- Class: cntToDo
*-- ParentClass: container
*-- BaseClass: container
*
DEFINE CLASS cntToDo AS container

 Width = 544
 Height = 114
 BackColor = RGB(255,255,255)
 Name = "cnttodo"

ADD OBJECT imgTask AS image WITH ;
 Picture =
"..\images\ribbon.png", ;
 Height = 43, ;
 Left = 10, ;
 Top = 6, ;
 Width = 37, ;
 Name = "imgTask"

ADD OBJECT txtTitle AS textbox WITH
;
 FontSize = 18, ;
 Height = 36, ;
 Left = 60, ;
 Top = 9, ;
 Width = 360, ;
 ForeColor = RGB(0,128,192), ;
 Name = "txtTitle"

ADD OBJECT imgCompleted AS image
WITH ;
 Picture =
"..\images\checkmark.png", ;
 Height = 28, ;
 Left = 469, ;
 Top = 12, ;

 Width = 23, ;
 Name = "imgCompleted"

ADD OBJECT imgDelete AS image WITH;
 Picture =
"..\images\delete.png",;
 Height = 20, ;
 Left = 507, ;
 Top = 16, ;
 Width = 14, ;
 Name = "imgDelete"

ADD OBJECT imgEdit AS image WITH ;
 Picture =
"..\images\edit.png", ;
 Height = 20, ;
 Left = 435, ;
 Top = 16, ;
 Visible = .F., ;
 Width = 25, ;
 Name = "imgEdit"

ADD OBJECT edtDescription AS
editbox WITH ;
 FontSize = 14, ;
 Height = 59, ;
 Left = 60, ;
 Top = 48, ;
 Width = 480, ;
 ControlSource = "descript", ;
 NullDisplay = "", ;
 Name = "edtDescription"

ENDDEFINE
*
*-- EndDefine: cnttodo

X# from Scratch

Copyright 2020, Eric Selje Page 29 of 33

Appendix B: The X# Classes
// XToDos.prg – the collection of Tasks

USING System.Collections.Generic
USING System.Collections.ObjectModel
USING System.Linq
USING System.Text

BEGIN NAMESPACE XSharpToDo

 DEFINE CLASS XToDos AS Custom
 cTableName AS String
 cAlias AS String
 cLastId AS String
 nTodos AS Int
 aToDos AS ObservableCollection<XToDo>

 PROCEDURE Init()
 SET EXCLUSIVE OFF
 This.cTableName = "C:\DEV\XToDos\ToDos.dbf"
 This.cAlias = "ToDos"
 This.nToDos = 0
 This.aToDos = ObservableCollection<XToDo>{}
 return
 end function

 public FUNCTION openToDos() AS Boolean
 LOCAL cTableName
 cTableName = This.cTableName
 IF NOT used("TODOS")
 SELECT 0
 USE (cTableName) SHARED
 ENDIF
 return used("TODOS")
 END FUNCTION

 public FUNCTION closeToDos() AS Boolean
 USE IN (CoreDb.SymSelect("ToDos"))
 return not used("Todos")
 END FUNCTION

 PUBLIC FUNCTION getToDo(cId as string) as XToDo
 VAR oToDo = createObject("XToDo")
 oToDo.Load(cId)
 return oToDo

 public FUNCTION Load() as Int
 LOCAL nToDos
 LOCAL oToDo AS XToDo
 This.OpenTodos()
 SET DELETED ON
 COUNT TO nToDos
 This.aToDos.Clear()
 SCAN
 oTodo = CreateObject("XToDo", ToDos.id)
 This.aToDos.Add(oToDo)
 ENDSCAN

X# from Scratch

Copyright 2020, Eric Selje Page 30 of 33

 This.CloseTodos()
 This.nToDos = nToDos
 RETURN This.nToDos

 public Function New(cTitle AS String) AS Int
 This.nTodos = This.nTodos + 1
 VAR oTodo = CreateObject("XToDo") // No ID
 oToDo.New(cTitle)
 oToDo.Save()
 This.cLastId = oToDo.Id
 aToDos.Add(oToDo)
 RETURN This.nToDos

 public function toggleCompleted(oTask as XToDo) as boolean
 oTask.completed = ! oTask.completed
 oTask.SAVE()
 This.Load()
 return oTask.completed

 public function deleteTask(oTask as XToDo) as boolean
 LOCAL lDeleted AS boolean
 lDeleted = oTask.Delete()
 This.Load()
 return lDeleted

 public Function GetLast() AS XToDo
 VAR oTodo = CreateObject("XToDo") // No ID
 LOCAL cId AS String
 IF EMPTY(This.cLastId)
 * Go to the bottom of the ToDos table and get that ID
 This.openToDos()
 SET ORDER TO
 SET DELETED ON
 GO BOTTOM
 cId = ToDos.id
 ELSE
 cId = This.cLastId
 ENDIF
 oTodo.Load(cId)
 RETURN oToDo
 END DEFINE

END NAMESPACE

// XToDo.prg

USING System
USING System.Collections.Generic
USING System.Text

BEGIN NAMESPACE XSharpToDo

 DEFINE CLASS XToDo as Custom
 id = ""
 title = ""
 descript = ""

X# from Scratch

Copyright 2020, Eric Selje Page 31 of 33

 entered = DateTime.Now
 completed = .f.
 isEditing = .f.
 isNew = .f.

 public FUNCTION Constructor() // No Parameter. New Task.
 This.new()

 public FUNCTION Constructor(cId AS String) // Parameter. Existing Task
 This.id = cId
 This.load(cId)

 public PROCEDURE clear
 This.id = ""
 This.title = ""
 This.descript = ""
 This.completed = False
 end procedure

 public function reload() AS Boolean
 RETURN This.load(This.id)

 public FUNCTION load(cId AS String) AS Boolean
 var lReturn = False
 This.openToDos()
 SET EXACT OFF
 GO TOP
 LOCATE FOR ToDos.id = cId
 lReturn = FOUND()

 IF lReturn
 This.id = ToDos.id
 This.title = ToDos.title
 This.descript = ToDos.descript
 This.entered = Todos.entered
 This.completed = ToDos.completed
 else
 This.clear()
 ENDIF
 This.CloseToDos()
 return lReturn
 END FUNCTION

 PUBLIC FUNCTION SAVE() AS Boolean
 LOCAL lReturn AS Boolean
 LOCAL lSaved AS Boolean
 LOCAL cId AS String
 LOCAL cDescript AS String
 LOCAL cTitle AS String
 LOCAL lCompleted AS Boolean
 cId = This.id
 TRY
 This.openToDos()
 LOCATE FOR ToDos.ID = cId
 lReturn = FOUND()
 IF NOT lReturn
 // INSERT INTO TODOS (ID) VALUES (CNEWID)
 APPEND BLANK

X# from Scratch

Copyright 2020, Eric Selje Page 32 of 33

 REPLACE id WITH cId, isEditing WITH .t., Entered WITH DateTime.NOW
 ENDIF
 cTitle = This.title
 cDescript = This.descript
 lCompleted = This.completed
 IF RLOCK()
 REPLACE Title WITH cTitle, ;
 Descript WITH cDescript, ;
 Completed WITH lCompleted, ;
 isEditing WITH .f.
 UNLOCK
 ENDIF
 This.isNew = .f.
 lSaved = .t.
 CATCH
 FINALLY
 This.closeToDos()
 END TRY
 RETURN lSaved
 END FUNCTION

 PUBLIC FUNCTION New()
 This.New("")
 RETURN This.id

 PUBLIC FUNCTION New(cTitle AS STRING)
 LOCAL lUsed
 This.Clear()
 VAR g = GUID.NEWGUID()
 This.id = g.TOSTRING()
 this.entered = DateTime.Now
 this.isEditing = true
 This.isNew = .t.
 This.title = cTitle
 RETURN This.id

 PUBLIC FUNCTION MarkCompleted(lComplete as Boolean) AS Boolean
 LOCAL lReturn as boolean
 This.completed = lComplete
 lReturn = This.SAVE()
 RETURN lReturn

 PUBLIC FUNCTION Delete AS Boolean
 LOCAL lReturn as boolean
 LOCAL cId as string
 cId = This.id
 This.openToDos()
 LOCATE FOR ToDos.ID = cId
 IF FOUND() AND RLOCK()
 DELETE
 UNLOCK
 lReturn = deleted()
 ENDIF
 RETURN lReturn

 public FUNCTION openToDos() AS Boolean
 // XToDos:openToDos()
 IF NOT USED("TODOS")

X# from Scratch

Copyright 2020, Eric Selje Page 33 of 33

 SET DEFA TO "C:\DEV\XTODOS"
 SELECT 0
 USE "TODOS" ALIAS "ToDos" SHARED
 ENDIF
 return used("TODOS")
 END FUNCTION

 public FUNCTION closeToDos() AS Boolean
 USE IN (CoreDb.SymSelect("ToDos"))
 return not used("Todos")
 END FUNCTION
 end define

END NAMESPACE // XSharpToDo

	Introduction
	Our Sample Application
	Conversion Strategy

	The Development Environment
	Create a New Solution
	What do Project Templates do for you?

	Converting Classes
	ToDo => XtoDo
	Using
	Begin Namespace
	Properties v. Fields
	Init() vs Constructor()

	Testing our Code
	Command Window?
	Unit Tests
	Adding Another Class to our Namespace
	The Startup Project

	The User Interface
	Adding Controls to our Form
	Binding Events to Controls
	Tying our Business Objects to the Form
	Creating our Custom Control
	Binding Data to Forms

	Reports
	Other Development Considerations
	Databases
	Frameworks?
	Source Control
	External Libraries and IDE Add-Ons
	Getting Help

	Conclusion
	Credits and Bibliography

	Appendix A: The Original FoxPro Classes
	cntToDo Visual Class – in Code

	Appendix B: The X# Classes

