
Flip the Switch
An Introduction to Visual Studio

Lightswitch for Visual FoxPro Developers

Eric Selje
Geeks and Gurus, Inc.

Madison, WI
Voice: 608/213-9567

Email: ejselje@geeksandgurus.com
Twitter: EricSelje

LightSwitch is Microsoft's latest development tool and it is aimed squarely at the same
market who may have considered Visual FoxPro in the past. LightSwitch creates attractive
Silverlight applications which can run on Windows, Mac, and theoretically Linux too.

If you're creating line-of-business applications, you should definitely have LightSwitch on
your radar.

mailto:ejselje@geeksandgurus.com

Yet Another Development Environment?
Microsoft’s recent roll-out of this new tool called Visual Studio LightSwitch has created
quite a bit of confusion. Marketing is having a hard time explaining where LightSwitch fits
into the development ecosystem: Is it a successor to Visual FoxPro? Access? Is it Visual
Studio for Dummies? Is it aimed at developers? Power users? Tech-savvy secretaries? How
does it compare with Microsoft’s other recent tools, like ASP.Net MVC 3 (or 4), Silverlight,
and C# 5.0 with WinRT. What does it really even do?

In this paper I’ll introduce application development from the Visual FoxPro developer’s
perspective. I’ll point out the many similarities LightSwitch has with Visual FoxPro, what
LightSwitch adds that Visual FoxPro does not, and what’s remarkably different and
downright odd.

Hopefully this whitepaper will clear up some of these issues for you, the Visual FoxPro
developer. You can ignore Microsoft’s marketing team and decide for yourself if
LightSwitch is the right tool for your next project.

What is LightSwitch?

Let’s start with what Jason Zander, corporate v.p. for the Visual Studio team, said on the day
LightSwitch was officially released (July 26, 2011)i:

Visual Studio LightSwitch 2011 is a simplified, self-service development tool that enables you
to create business applications quickly and easily for the desktop and cloud. It starts with the
premise that most business applications consist of data and the screens that users interact
with. LightSwitch simplifies attaching to data with data source wizards or creating data
tables with table designers. It also includes screen templates for common tasks so you can
create clean interfaces for your applications without being a designer. Basic applications can
be written without a line of code. However, you can add custom code that is specific to your
business problem without having to worry about setting up classes and methods.

Parts of that sure sound a lot like Visual FoxPro right? Data and screens are FoxPro’s thang.
But it also sounds a bit like Access when he says you don’t have to write a line of code.
What he doesn’t mention is that LightSwitch generates Silverlight applications, which
makes LightSwitch sound a bit like a fancy app wizard. It also can use SQL databases or
“local” data, so we’re back to Visual FoxPro’s domain again. It creates 3-tier applications,
which sounds like it steps on ASP.Net MVCs turf. Lastly, you can publish to Azure which is
just plain awesome.

There’s actually so much to say about LightSwitch that it would take a long book to discuss
all of its features, but let’s start working on an actual application. In this whitepaper I’ll
point out things of interest to Visual FoxPro devs and then we can decide for ourselves
what LightSwitch is…

Getting Started
If you haven’t yet, download Visual Studio LightSwitch. It’s available on MSDN for those of
you who subscribe to that, or you can get a free 30 day trial version from Microsoft’s
download center. Visual Studio LightSwitch is not free! Even if you already own Visual
Studio 2010, LightSwitch does cost a little bit of money (around $300, which is less than
Visual FoxPro used to cost). If you don’t already have Visual Studio, the download does
install a copy that allows you to create LightSwitch projects. If you already have Visual
Studio, LightSwitch becomes a new template you can choose when starting new projects.

LightSwitch also installs a copy of SQL Express on your machine to manage local databases.
It does this regardless of whether you already have a copy of SQL Server installed.

After LightSwitch is installed, you create a new LightSwitch application by selecting File,
New Project. You can choose either Basic or C# as your language of choice, and for my
examples I’m going to choose C# because I find it very FoxPro-like (in fact, some of the
FoxPro team worked on C#)

After you’ve given your application a good name and click Ok, you’ll come across the first
screen that lets you know we’re dealing with something special - LightSwitch is
encouraging us to “Start with data.” Yes! This is something we Visual FoxPro developers
can get behind!

Create new table

This option will bring up a database designer
that doesn’t look all that much different than
FoxPro’s, although it has some nice additions.
The tables actually get created in a local copy
of SQL Express while you’re developing the
application. When you deploy the application
you can decide if you want to deploy the
database as well or connect to something else.
(We’ll discuss that much further down, in the
deployment section).

Attach to external Data Source

If you’ve already got data in a SQL Server database, a SharePoint “list,” or accessible via
WCF RIA Service (web service), you’ll select this option. For databases, only a provider for

Microsoft SQL Server is included with LightSwitch, but
3rd parties are creating some very intriguing ADO.Net data providers. For example, RSSBusii
has created data providers for Facebook, Twitter, QuickBooks, Google Data (Gmail, etc.),
SalesForce, PowerShell and more already using the Extension Manager in Visual Studio.

What about FoxPro Databases?!

The obvious question we FoxPro developers will want to know is “Can I use Visual FoxPro
databases with LightSwitch?” The short answer is “Yes” but it’s a bit of a hassle and it
doesn’t make a lot of sense. If you’re starting a new application that needs to talk to local
data, just use the SQL Express that comes with LightSwitch. If you’re migrating an existing
application to LightSwitch and want to keep your data in DBCs, create WCF RIA services
that wrap around your existing business objects. This will provide a layer that LightSwitch

can use to talk to your data. Your data will then remain on your server, and your
LightSwitch app will call out to the services that will fetch and return the data back to your
application. Creating WCF RIA services is beyond the scope of this session, but it’s actually
not terribly difficult. Also be sure to check out the “Linq to VFP” project on CodePlex.iii

Having a desktop LightSwitch application that talks to FoxPro databases that reside on the
same machine doesn’t make a lot of sense to me, but if you can provide an argument for
why that would be useful I’d love to hear it.

Entities

When you add a data source to LightSwitch, you’re not actually communicating directly
with the databases like you are when you use SQL Pass-through in Visual FoxPro.
LightSwitch instead inserts a layer called the Entity Data Model between your data and
your user interface. It’s a bit like remote views in FoxPro, but the entities are actually
classes so you get a lot more functionality.

Let’s create some data from scratch and you’ll get a better sense of what I mean. For the
example I’m going to create the very tables that are used to maintain the Southwest Fox
data. Let’s start with who’s speaking:

Speakers (who’s talking at the conference)

Add a table to your solution (either by clicking
“Create New Table” from the welcome screen or
right clicking “Add Table” on the Application Data
in the Solution Explorer.

It may not be obvious that the cursor is sitting on the name of the table (Table1Item) and
you need to change it. Keep the name singular (you’ll see why in a moment).

Notice how Id gets automatically inserted and cannot be deleted. It’s an autoincrementing
primary key field, which every table needs if it’s designed well. It’s checked as Required
which cannot be changed.

The first field we can actually add is the first name field, “First”. In FoxPro we’d have to try
to figure out the maximum length of this field, but in LightSwitch there’s no “length”
property. All Strings are variable length, with an effective maximum length of 4,000
characters. So even though the “Middle” field may only need to be one character, we also
give that a type of String; The same with “Last.” Let’s check First and Last as Required and
you’ll see in a minute how that comes into play.

Email Addresses & Phone Numbers

Next we come to the email address, and this is where it becomes clear that while it looks
like we’re defining the schema of a table, we’re actually setting the properties of an entity.
In the dropdown choices for Type, there is an option for “Email Address.” Now we know
that there is no SQL Server field type called Email Address, so what’s going on here?
LightSwitch is going to define the field as a String at the data level, but will automatically
detect whether the value in this field looks like a valid email address! Y

That is very handy, especially for those
of us who struggle with regular
expressions. See Appendix A for a
complete list of data types supported in
LightSwitch and Appendix B for how
SQL Server data types are represented
in LightSwitch entities.

The “Phone Number” data type gives
similar functionality, except formatted
for phone numbers. It’s able to
recognize multiple different countries’
phone number formats, and you can
tailor exactly which formats are
permittd in your data by clicking “Phone Number Formats…” in the properties window.

Images

The “Photo” field in the Speaker table will be of type image, which as we’ll see in a moment
gives you some nice functionality in the User Interface. Unlike FoxPro’s “General” or “Blob”
field, the Image data type does a good job of storing photos with very little friction.

Computed Fields

LightSwitch entities also give us the ability to create “computed” fields. In the Speakers
field, for example, let’s create a field called Name which is the concatenation of the First,
Middle, and Last properties. Check the
“Is Computed” box in the field’s
properties, and you’ll get the partial
class definition for the Speaker class,
which is mostly empty at this point.
Fill in the new method with this code:

 public partial class Speaker
 {
 partial void Name_Compute(ref string result)
 {
 // Set result to the desired field value
 StringBuilder cReturn = new StringBuilder();
 cReturn.AppendFormat("{0} {1} {2}", First, Middle, Last);
 result = cReturn.ToString();
 }
 }

(Notice the computed field functions pass in the result by reference, so that’s the name of
variable where you want to store your return value.)

Another value that you might like to have calculated automatically is “Age.” If you add a
Date field for “Birthday”, you can create a computed field for Age with this code:

 partial void age_Compute(ref int result)
 {
 // Set result to the desired field value
 DateTime today = DateTime.Now;
 result = today.Year - birthday.Year;

 if (today.Month < birthday.Month || (today.Month == birthday.Month && to
day.Day < birthday.Day))
 result--;
 }

Choice Lists
Let’s add the Topic table to our application. That looks like this in Visual FoxPro:

You should now be able to add
these fields to your new Topic
entity without any trouble, as
these field types are all pretty
straightforward.

One powerful feature that is
available in LightSwitch is the
“Choice List”. You can restrict the
value of a field to an enumerated
set of values by selecting “Choice
List…” on the field’s property
sheet.

In this table, we want to restrict the “Level” field to
either be “Beginner,” “Intermediate,” or “Advanced.”
The figure to the right shows what that looks like. In the
User Interface, you’ll soon see this gives us a drop down
list control for the Level field with these options
available to us.

Partial Class?

If you haven’t coded much in C#, you may not have seen the Partial Classes yet.
There is no real equivalent in Visual FoxPro, but it’s very cool. It allows you to split
the class definition among several (though usually just two) different files on disk. .
The bulk of the code, which might be changed via an upgrade or code generation,
for example, goes into one file. Your customized parts go in a separate file (such as
our computed field methods above). Class definitions in C# are straight text files,
not binary files like in Visual FoxPro.

By doing this you don’t lose your modifications when you regenerate the class
because it won’t overwrite your file. This is somewhat similar to subclassing, except
we’re not actually creating that extra abstraction layer.

Summary Property
Every entity has one property (field) that can be designated the “Summary Property.” That
field is then used on screens that show a list of all the entities. For example if you’re
showing the list of
Speakers to choose from,
you would want to show
the full name of the
speaker rather than just
their first or last name,
so we’ll designated our
Computed property
“Name” as the Summary
Property for the
speakers table, using the
property sheet.

Relationships
While you can define relationships in a Visual FoxPro database container and set up
referential integrity, LightSwitch takes that even further. Adding a relationship to an entity
actually makes the related entity appear as a collection when you select an entity.

I’ll show you what I mean: In the Topic table, right click on the left margin and choose “Add
a Relationship.” A dialog comes up that looks similar to what’s in Visual FoxPro:

Select Speaker in the dropdown list for the related table. You can define the On Delete
behavior as either Cascading (delete all topics if the speaker is deleted) or Restricted (you
cannot delete a speaker if they have any topics). I like how LightSwitch spells what is going
to happen right out for you.

The Visual FoxPro dev might be wondering why there are no referential integrity options
for “On Update” or “On Insert” like we have in VFP. Because LightSwitch forces an
immutable primary key field on every table, that Id field will never be updated so there is
no need for an “On Update.” Similarly, you simply cannot insert a foreign key into a
LightSwitch table that doesn’t link back to a primary key in the parent table. This is good
database design and I’m happy with this restriction.

Your entity-relationship design now looks like this. Notice the new “Field” in Topic named
Speaker that appears to have a data type called Speaker. This is in-fact exactly the case. An
entity is actually a data type that can be used just like any other data type.

If you DoubleClick the Speaker entity above, you’ll see the other side of the relationship.
The Speaker table now has a field that contains a collection of Topic entities:

That’s pretty cool in and of itself, but the big payoff comes when we’re creating screens,
which we’ll do in the next step.

Screens
One thing LightSwitch and Visual FoxPro both have in common is the concept of data-entry
forms, which they both call Screens. After dealing with Forms for the last few projects, it’s
good to be dealing with Screens again.

Right Click on Screens in the Solution Explorer and select “Add a Screen.”

LightSwitch comes with five screen templates to choose from, and you can create your own
or download templates that others have created. Of the ones available in the templates, the
“List and Details Screen” provides a great starting point for looking at our data.

The “Details Screen” template is good for looking at one entity at a time, such as a speaker
and all of their topics. The “Editable Grid Screen” is much like a browse window. The “New
Data Screen” is much like the “Details Screen,” customized for adding records. The “Search
Data” screen all the entities in a read-only grid more suitable for finding records.

If you’ve set up relationships, the details screens will automatically show the child records
in a grid if you tell it to. Notice in the figure above that the “Speaker Topics” checkbox is
selected.

WYS IS NOT WYG

After using the WYSIWYG screen editor introduced in Visual FoxPro 2.0, the VFP developer
is likely to be appalled, at least initially, by what passes for a screen designer in
LightSwitch.

In the left hand column we get the entities used by the screen.
In the center column there’s some sort of hierarchical outline of the controls.
In the right hand column there’s a property sheet for the selected control.
But where is the layout? How do you precisely place the objects where you want them?
How do you get to “design mode”?
This is definitely not the screen designer that you’re currently used to.

Instead of dictating where things go with Top and Left and Width and Height, LightSwitch
screens use “flows” to layout the screen. This is similar to the way HTML lays out pages,
and directly analogous to Silverlight’s WPF layout. And while this may seem incredibly
limiting at first, it actually frees the developer from a lot of restrictions. You no longer have
to worry about a “resize” event or what the dimensions or resolution of the user interface
might be, because this is all taken care of for you automatically regardless whether you’re
running on a large monitor or a portable device.

Tip: I find it helpful to collapse the hierarchy in order to figure out the layout. By doing that in
the SpeakerListDetail screen, it becomes clearer that
this screen is set up in a Columns Layout, so each
subcontrol of the page will be placed side by side.

There are three controls on the page so you might
think you’ll get three columns but it is actually only
two columns (the Command Bar is part of the layout
itself): the List Column and the Details Column.

The List Column is configured in a Rows Layout, so the flow within that column moves
downwards instead of across the page. There is in fact only one control in that column, the
list control called Speakers, so it could have actually flowed either way.

Notice how each entry in the outline of the screen follows a pattern of [Layout/Control] |
Property . The top level control here is Rows Layout | List
Column, and the next control is List | Speakers. After the
command bar though, there’s a control that doesn’t specify
which control to use, it just says | Speaker. When no specific
control is designated, LightSwitch will automatically use
the default control for the item. In this case, Speaker is the
entity containing the speaker data, and inside of a list
entities are represented by the Summary Property we
selected when we initially setup the Entity, which for
Speakers was the Computed property we called Name for
the full name of the speaker.

Details column is also set up in a Rows Layout and
contains only two controls, the Speaker Details and the
Topics that the speaker is giving, represented by a Data
Grid control.

The Speaker Details also flow in a Row (top to bottom)
Layout, with a control for every property in the Speaker
entity. Notice how all the entities use the default control.
We can override that if we would like to. If you’ve
purchased 3rd party custom controls for LightSwitch (there
are many available) or written your own controls (beyond
the scope of this paper, but entirely possible to do), you can
select that control either on the Property Sheet are by
clicking on the arrow next to the
field name. For example, date fields
such as Birthday will use the date
picker control, but if we wanted to
switch that to a textbox we could do
that.

Wait, LightSwitch has a built-in Date
Picker control? Sweet!

The other control in the Speaker
Details layout is the Data Grid that shows the Topics that the selected speaker is
presenting. We don’t have to do any coding to make this work; LightSwitch uses the
intelligence built into the Speaker Entity to show the correct children.

Without doing any modifications to the screen, hit Ctrl+F5 to see what our application
looks like for the very first time:

Viewing our First LightSwich Application

The application is attractive, with a customizable Command Bar along the top and
navigation along the left-hand side. Clicking
the “Speaker List Detail” menu option brings
up our new screen. There are no records yet,
but click the green “Plus” icon brings up this:

Wait, we didn’t design this screen, did we?
No, we did not.
LightSwitch can auto generate attractive
screens with intelligent defaults with our
intervention or coding. That’s a very nice
feature! (And of course we can override this
default screen with a custom screen we write.)

Here are a few other nice things that LightSwitch does for us:

- The fields with bold captions are the ones we marked as “Required” in the entity
definition, and LightSwitch automatically enforces that in the User Interface.

- The Email field doesn’t require a value, but if one is entered LightSwitch will
automatically verify that what’s entered looks like a valid email address.

- The Accepted field has a three-way checkbox for Yes, No, and Unanswered (or null).

- The Photo field has built-in functionality to load images
from a file on your hard drive. Once a picture is loaded it
shows the image automatically.

- The Birthday field has a date picker control, as mentioned.

- The Name field is updated when the First, Middle, or Last
field is updated, and the Age field is computed automatically and updates when the
Birthday is changed. No Thisform.Refresh() required!

- If we’d had a field that we specified a Choice List for, we’d automatically get a drop-
down list with those options.

- All of the object-relational mapping all happens automatically. We don’t have to
write any code to insert the data from the Entity into SQL or retrieve it back out. We
can add the parent record and children on the form before clicking Save and
LightSwitch keeps track of the new primary key and inserts it into the child table
automatically.

This default screen isn’t perfect. Even though we told the Speaker entity that the Bio
field is 4,000 characters long, LightSwitch didn’t consider making the textbox “multi-
line,” or the equivalent of FoxPro’s EditBox control. This is easily achieved on custom
screens by tweaking the settings for the field on the property sheet, but cannot be
modified on the default screen.

To create a custom screen that gets invoked when a new Speaker Entity is wanted,
choose Project, Add Screen from
the menu and select a “New Data
Screen”. Specify Speaker in the
Screen Data pulldown.

But wait, WYSI kinda WYG

LightSwitch actually does have a WYSIWIG editor, but oddly you don’t get it while you’re
developing the screens in Visual Studio.

In the upper-right hand corner of screens that are running in
development mode, there is a link to “Design Screen.” Rather than taking
you back to Visual Studio’s normal screen designer, it pulls up hybrid
WYSIWIG screen designer that shows an actual rendering of the screen
with data:

In the example above, I changed the height of the Bio field to 10 lines (effectively changing
it from a “textbox” to an “editbox” and the change is immediately rendered in the screen
preview.

Navigation
When a new screen is added to your application, LightSwitch automatically adds a link to
that screen in the Navigation pane on the left-hand side of the app. You may not want a link
to every screen right from the main navigation, or you may want to re-order the choices.
You do that by selecting Project, <ProjectName> Properties from the menu and selecting the
Screen Navigation tab.

There is currently no way to create hierarchical navigation using the native controls.

If you’d like to have a particular screen appear automatically when the application starts,
you can select that here as well by highlighting the screen name and clicking Set.

Application Security
LightSwitch incorporates security right into the framework, so if you want to limit parts of
your application to only certain users, you can do that. LightSwitch respects one of four
different options for authentication:

- Windows Authentication, where any valid Windows User can get in.

- Windows Authentication, where you can specify which Users get in.

- Forms Authentication, where you use .Net’s Security Provider database to control
who has access to the application.

- No authentication at all.

There is no option for “mixed mode” authentication in LightSwitch. If you want
authentication and your application is going to be hosted within your environment
you’ll probably want to use Windows Authentication, otherwise you’ll use Forms
authentication.

If you choose Forms Authentication or Windows Authentication where you choose who
gets access to what features, LightSwitch includes the forms to specify the Roles and the
Users in the framework. There isn’t currently a facility included in LightSwitch for
adding users using a federated account, or a “Forgot Password” function on the login
screen. You’ll probably want to use 3rd party tools for that.

There are many resourcesiv which discuss Authentication in depth. It’s a feature that
Visual FoxPro doesn’t include in the box, and it is a welcome addition for developers
who’ve had to develop that ourselves in the past.

Themes
If you aren’t particularly fond of the default look of the applications LightSwitch generates,
do not fret. LightSwitch applications are “themable,” and switching themes is easy. Simply
search Visual Studio’s Extension Manager Online Gallery for “LightSwitch Theme”,
download the themes, and restart Visual Studio (ugh).

To use the theme, you must first enable it in the Properties of your application:

And to switch to one of the enabled themes, select it in the General Properties. Here are
screenshots of this simple applicaton using four different themes.

Deployment

Once the application is ready to go out the door, LightSwitch gives you multiple options for
deployment:

Client Configuration

1. Desktop Client
The application runs on the users desktop and can access Office and other program’s
on the user’s computer.

2. Web Client
The application runs inside the user’s browser and has no access to other programs
on their computer.

Server Configuration

For delivering the application to the client, you also have a few options:

1. Local
The application is delivered to the user’s machine and run from a shortcut.

2. IIS Server
The application is hosted on a web server accessible to the client, and is accessed via
a URL.

3. Windows Azure
The application is hosted on rented space in Windows Azure. The database may also
be in Windows Azure, giving you a complete “cloud-based” solution!

The deployment wizard can automatically generate scripts for creating the database on the
target server as well. If you’ve already deployed the application it can generate just the
scripts necessary to update the schema of your database.

AutoUpdating Applications

If you choose options 2 or 3 above for delivering your applications, you can automatically
update your clients simply by incrementing the version number in your application’s
properties and republishing your applications. The clients will download the newer version
automatically. Nice!

Summary

Hopefully this whitepaper has given you as a Visual FoxPro developer a good sense of what
LightSwitch can do and how it compares and contrasts to our favorite developtment tool.

Microsoft has created a lot of uncertainty about its commitment to Silverlight and .Net, and
with the impending release of Windows 8 that has only increased. Here’s a handy chart by
Telerik that may clarify when you’d choose LightSwitch for your next project.

The Bottom Line

I hope my session and this whitepaper have elucidated what Visual Studio LightSwitch can
do and where it might fit into your development toolbox. There really is a lot more that I
just couldn’t possibly cover so if you’re interested please check out the resources listed
below.

For Visual FoxPro developers, I won’t say LightSwitch is the heir apparent to Visual FoxPro,
but it definitely is the favored nephew of our beloved development tool. It’ll be interesting
to see where Microsoft takes this tool. Right now it only generates Silverlight code and
Microsoft has not made it clear that it support Silverlight in the long term.

If LightSwitch could learn to generate HTML5 websites that bind to the tables as nicely as
we are used to (possibly using a JavaScript library such as Amplify.js or Lawnchair) and
event driven (with jQuery) and using something like the Knockout.js library for MVVM
goodness, it would be an unbeatable tool for developing web apps that can run on any
platform or device.

Where do I go from here?

Visual Studio LightSwitch does not lack support or documentation. I’m actually astounded
by the resources Microsoft has created for supporting LightSwitch: videos, training kits,
blog posts, help files, sample applications. Many independent bloggers have also posted a
ton of information about LightSwitch in a very short time. Here’s a short list of some of the
sources I used while putting this session together:

Official LightSwitch Documentation: http://msdn.microsoft.com/en-us/library/ff851953.aspx
Sample Applications: http://www.silverlight.net/showcase/
Northwind Samples:
http://www.microsoft.com/downloads/en/details.aspx?familyid=06616212-0356-46a0-8da2-
eebc53a68034&displaylang=en
Starter Kits: http://blogs.msdn.com/b/bethmassi/archive/2011/08/01/getting-started-with-the-
lightswitch-starter-kits.aspx
Training Kit: http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=23746
 LightSwitch Developer Center on MSDN: http://msdn.microsoft.com/en-us/lightswitch/ff938857.aspx
How Do I video series: http://msdn.microsoft.com/en-us/lightswitch/gg604823
Tutorials: http://www.dotnetfunda.com/misc/page36.aspx

Copyright, 2011, Eric Selje.

http://msdn.microsoft.com/en-us/library/ff851953.aspx
http://www.silverlight.net/showcase/
http://www.microsoft.com/downloads/en/details.aspx?familyid=06616212-0356-46a0-8da2-eebc53a68034&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?familyid=06616212-0356-46a0-8da2-eebc53a68034&displaylang=en
http://blogs.msdn.com/b/bethmassi/archive/2011/08/01/getting-started-with-the-lightswitch-starter-kits.aspx
http://blogs.msdn.com/b/bethmassi/archive/2011/08/01/getting-started-with-the-lightswitch-starter-kits.aspx
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=23746
http://msdn.microsoft.com/en-us/lightswitch/ff938857.aspx
http://msdn.microsoft.com/en-us/lightswitch/gg604823
http://www.dotnetfunda.com/misc/page36.aspx

Appendix A

Data types supported by the entities in LightSwitch

(Via LightSwitch Team):

LightSwitch
Type

VB Type C# Type Range Remarks

Binary Byte() byte[] Each byte is 0 to 255 Variable length array of bytes;
MaxLength specifies the maximum
number of bytes

Boolean Boolean bool True or False

Byte Byte byte 0 to 255

Date Date DateTime Jan 1, 0001 AD (CE) to
Dec 31, 9999 AD (CE)

A DateTime treated as date only;
LightSwitch truncates any time portion

DateTime Date DateTime 00:00:00 Jan 1, 0001 AD (CE) to
23:59:59 Dec 31, 9999 AD (CE)

Decimal Decimal decimal ±1.0e−28 to ±7.9e28 Fixed decimal point value with 28-29
significant digits; suitable for financial
and monetary values; stored with
specific precision and scale

Double Double double ±5.0e−324 to ±1.7e308 Floating decimal point with 15-16
digits precision; suitable for scientific
numbers

Email Address String string A String treated as an email address

Guid Guid Guid {00000000-0000-0000-0000-
000000000000} to
{FFFFFFFF-FFFF-FFFF-FFFF-
FFFFFFFFFFFF}

A 128-bit integer used as a unique ID

Image Byte() byte[] A Binary treated as an image

Int16 Short short -32,768 to 32,767 A signed 16-bit integer

Int32 Integer int -2,147,483,648 to 2,147,483,647 A signed 32-bit integer

Int64 Long long -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

A signed 64-bit integer

Money Decimal decimal A Decimal treated as a monetary value

http://msdn.microsoft.com/en-us/library/e2ayt412.aspx
http://msdn.microsoft.com/en-us/library/5bdb6693.aspx
http://msdn.microsoft.com/en-us/library/wts33hb3.aspx
http://msdn.microsoft.com/en-us/library/c8f5xwh7.aspx
http://msdn.microsoft.com/en-us/library/e2ayt412.aspx
http://msdn.microsoft.com/en-us/library/5bdb6693.aspx
http://msdn.microsoft.com/en-us/library/3eaydw6e.aspx
http://msdn.microsoft.com/en-us/library/system.datetime.aspx
http://msdn.microsoft.com/en-us/library/3eaydw6e.aspx
http://msdn.microsoft.com/en-us/library/system.datetime.aspx
http://msdn.microsoft.com/en-us/library/xtba3z33.aspx
http://msdn.microsoft.com/en-us/library/364x0z75.aspx
http://msdn.microsoft.com/en-us/library/x99xtshc.aspx
http://msdn.microsoft.com/en-us/library/678hzkk9.aspx
http://msdn.microsoft.com/en-us/library/thwcx436.aspx
http://msdn.microsoft.com/en-us/library/362314fe.aspx
http://msdn.microsoft.com/en-us/library/system.guid.aspx
http://msdn.microsoft.com/en-us/library/system.guid.aspx
http://msdn.microsoft.com/en-us/library/e2ayt412.aspx
http://msdn.microsoft.com/en-us/library/5bdb6693.aspx
http://msdn.microsoft.com/en-us/library/7tb7bdw6.aspx
http://msdn.microsoft.com/en-us/library/ybs77ex4.aspx
http://msdn.microsoft.com/en-us/library/06bkb8w2.aspx
http://msdn.microsoft.com/en-us/library/5kzh1b5w.aspx
http://msdn.microsoft.com/en-us/library/y595sc15.aspx
http://msdn.microsoft.com/en-us/library/ctetwysk.aspx
http://msdn.microsoft.com/en-us/library/xtba3z33.aspx
http://msdn.microsoft.com/en-us/library/364x0z75.aspx

PhoneNumber String string A String treated as a phone number

SByte SByte sbyte -128 to 127 A signed 8-bit integer

Single Single float ±1.5e−45 to ±3.4e38 Floating decimal point with 7 digits
precision

String String string A sequence of zero or more
Unicode characters

A variable length character string;
MaxLength specifies the maximum
number of characters

TimeSpan TimeSpan TimeSpan ±10675199.02:48:05.4775807 A time interval in days, hours, minutes,
seconds, and fractions of a second
When stored in SQL the range is
00:00:00.0000000 to
23:59:59.9999999

http://msdn.microsoft.com/en-us/library/thwcx436.aspx
http://msdn.microsoft.com/en-us/library/362314fe.aspx
http://msdn.microsoft.com/en-us/library/11dhfews.aspx
http://msdn.microsoft.com/en-us/library/d86he86x.aspx
http://msdn.microsoft.com/en-us/library/xay7978z.aspx
http://msdn.microsoft.com/en-us/library/b1e65aza.aspx
http://msdn.microsoft.com/en-us/library/thwcx436.aspx
http://msdn.microsoft.com/en-us/library/362314fe.aspx
http://msdn.microsoft.com/en-us/library/system.timespan.aspx
http://msdn.microsoft.com/en-us/library/system.timespan.aspx

Appendix B

SQL Server data types and their equivalents in LightSwitch

(again, via Lightswitch Team):

Imported Column Type LightSwitch Type Supported Attributes

binary(n) Binary Required, MaxLength=n

image Binary Required, MaxLength=Max

timestamp Binary Required, MaxLength=8

varbinary(n) Binary Required, MaxLength=n

bit Boolean Required

tinyint Byte Required

date Date Required

datetime DateTime Required

datetime2(n) DateTime Required

smalldatetime DateTime Required

decimal(p,s) Decimal Required, Precision=p, Scale=s

money Decimal Required, Precision=19,

Scale=4

numeric(p,s) Decimal Required, Precision=p, Scale=s

smallmoney Decimal Required, Precision=10,

Scale=4

float Double Required

uniqueidentifier Guid Required

smallint Int16 Required

int Int32 Required

bigint Int64 Required

real Single Required

char(n) String Required, MaxLength=n

nchar(n) String Required, MaxLength=n

ntext String Required

nvarchar(n) String Required, MaxLength=n

text String Required

varchar(n) String Required, MaxLength=n

xml String Required, MaxLength=Max

time(n) TimeSpan Required

datetimeoffset not supported

geography not supported

geometry not supported

hierarchyid not supported

sql_variant not supported

i http://blogs.msdn.com/b/jasonz/archive/2011/07/26/visual-studio-lightswitch-2011-is-available-
today.aspx

ii http://www.rssbus.com

iii http://linqtovfp.codeplex.com/

iv http://blogs.msdn.com/b/bethmassi/archive/2010/10/06/implementing-security-in-a-lightswitch-
application.aspx

http://blogs.msdn.com/b/jasonz/archive/2011/07/26/visual-studio-lightswitch-2011-is-available-today.aspx
http://blogs.msdn.com/b/jasonz/archive/2011/07/26/visual-studio-lightswitch-2011-is-available-today.aspx
http://linqtovfp.codeplex.com/
http://blogs.msdn.com/b/bethmassi/archive/2010/10/06/implementing-security-in-a-lightswitch-application.aspx
http://blogs.msdn.com/b/bethmassi/archive/2010/10/06/implementing-security-in-a-lightswitch-application.aspx

