
FoxUnit in Depth

Eric Selje
Salty Dog Solutions, LLC
www.SaltyDogLLC.com

Madison, WI USA
Voice:608-213-9567
Twitter: @EricSelje

Email:Eric@SaltyDogLLC.com

You've got years and years of legacy code to maintain. How can you be sure you're making
changes without breaking everything and putting your company and your reputation at risk?

In this session we'll review what Unit Testing is, why you should be doing it, and how to use
the VFPX tool FoxUnit to perform unit tests on your code. If it's been a while since you've
looked at FoxUnit, you may be pleasantly surprised at how many new features have been
added in the last few years, thanks to multiple contributors in the Fox family.

FoxUnit in Depth

Copyright 2016, Eric Selje Page 2 of 28

Introduction
Have you ever written a function and just knew that it was perfect? It sprung from your
fingertips perfectly formed, did exactly everything you needed the first time, and you never
needed to touch that code again? If so, unit testing is not for you, and you may stop reading.
The rest of us will find unit testing incredibly beneficial.

What is “Unit Testing”
Unit testing is writing code that “tests” your real code. It ensures your code does what you
expect, doesn’t throw (unexpected) exceptions, and returns the value(s) you want and
never the values you don’t want.

I used to find myself writing code in FoxPro, then immediately dropping to the Command
Window to verify that the code I just wrote worked. Often that would end up looking
something like this:

That’s unit testing! It’s not very good unit testing, but it is unit testing. The problem with
this code is:

• It’s designed to succeed. We were expecting a certain result when we sent in two
parameters of a specific type, and we got them so we called it a success. But what
happens if you send only one parameter? Or three? Or parameters of unexpected
types? Or nulls? We didn’t test for any of that so we have no clue whether or
function is actually robust at all.

• It’s ephemeral. That test code will disappear into the history of the Command
Window before the day’s over. We could re-run the test by trying to find that code
again, but that inefficient. If you’re clever you might put it into a little PRG file so you
can find it quicker and run it, but that doesn’t scale very well.

• It’s manual. Wouldn’t it be much better if you could automatically run the unit tests
you’ve written whenever you make a change to your code?

Ok, if that’s not a good unit test, let’s make it better. A good rule of thumb is that all of the
tests for a specific object should be in their own isolated test class.

Hold up… what if your code isn’t in an object? How can you test, say, the code that’s in the
Click() event of a button of a form? Simply put, you can’t. It’s “untestable”. Well you could
but you’d have to create some very awkward code and do other acrobatics to make it work.

FoxUnit in Depth

Copyright 2016, Eric Selje Page 3 of 28

That’s why we’ve been told for years that there should never be business logic stored in
events except a call to a method of a business object. For example, if there’s a Save button
on the form, and the code to write the data from the form to the table is in the event
method of that Save button.

And if you think moving this code to the form level and then calling ThisForm.Save() is a
good idea, I’d say it’s a step in the right direction but it really doesn’t solve the problem. If
you did that you’d be able to call the Save() code from multiple places on the form, e.g.
when the form’s Close event fires, without resorting to something like

ThisForm.cmdSave.Click() && Bad Bad Bad!!

But it still leaves the code to save the data in the form itself, which is still considered
untestable because you’d have to instantiate the form, a user-interface object, in order to
test the method. Testing the user-interface is not unit testing.

Instead, create a class that mediates your user interface and your database, known as a
“business object,” and put the Save code in there. If you haven’t used business objects
before check out Rick Strahl’s wwBusinessi and Tamar Granor’s whitepaper from
Southwest Fox 2009ii.

Writing testable code is key to good software engineering. It might seem encumbering to
have your object’s event code call a method of the form which invokes a business object,
but in the end it creates much cleaner separation of concerns and testable code.

Let’s get back to how we write good unit tests. For these examples in this whitepaper I’m
going to use the FoxTypes class I created (see Appendix A, and also in the session downloads
and on my github page, https://github.com/eselje/FoxTypes) that emulates C#’s
String.Format() function in Visual FoxPro. It’s instantiated like this:

SET PROCEDURE TO STRING.prg ADDITIVE
* This makes the STRING object available everywhere, like C#
ADDPROPERTY(_vfp, "STRING", CREATEOBJECT("String”))

and used like this

https://github.com/eselje/FoxTypes

FoxUnit in Depth

Copyright 2016, Eric Selje Page 4 of 28

? _VFP.STRING.Format("Welcome to Southwest Fox {0}!", 2016)

Welcome to Southwest Fox 2016!

Pretty cool eh? You can also add up to 9 parameters too and even mix up the types and
order of the parameters. E.g.

? _VFP.STRING.Format("Precons for {3} {0} are on {1:D} and cost a mere {2:C}. ", ;
 2016, {^2016/09/22}, 99, "Southwest Fox/xBase++")

Precons for Southwest Fox/xBase++ 2016 are on Sep 22, 2016 and cost a mere $99.

How would we write unit tests for this String class? Let’s start by taking a look at what
constitutes a good unit test:

1. A good unit test should test one thing and one thing only, and the result of the test
should be pass or fail.

2. A good unit test does not rely on other unit tests. Each test should be self-contained,
not have dependencies or leave remnants of itself, should be runnable in any order,
and not have side effects. To that end, if your function relies on something like a call
to a REST function or a database, we must ’mock’ that call in the unit test. Why?

In the instance of a call to a REST function, your unit test’s job is not to test that
REST function. In the instance of the database call, that expects that there’s a
database available (“dependencies”), and if you alter the database that will violate
the “no side effects” rule.

3. A good unit test should be easy to read and quick to run.

4. Unit tests should be well organized, with one “test class” for each object you’re
testing. There can be multiple tests for any of the methods in your test class and in
fact that’s encouraged! You want to find out what happens when you don’t pass the
right number of parameters, or pass parameters of the wrong type, or nulls. Can
your function handle extra large numbers or negative numbers? Throwing these
edge cases at your function is encouraged when you’re unit testing.

Let’s take a look at how FoxUnit helps us accomplish these goals.

FoxUnit in Depth

Copyright 2016, Eric Selje Page 5 of 28

Installing FoxUnit
FoxUnit is the only (as far as I’m aware) unit testing framework for Visual FoxPro. It was
initially written by VisionPace Corp. but has been submitted to VFPx, the open-source
repository for Visual FoxPro projects.

There are a couple of ways to get the FoxUnit bits onto your system. If you’re using Thor
(and you really should be using Thor), FoxUnit is one of the many applications you can
install.iii

FoxUnit in Depth

Copyright 2016, Eric Selje Page 6 of 28

Another tremendous advantage of using Thor is that any of its applications can be added to
your toolbar as well as “hotkeyed” through the Configuration screen, so starting FoxUnit is
always as easy as Ctrl+Alt+U (in my case).

I’d

recommend installing FoxUnit via Thor, but if you must you can also get the bits directly
from VFPx (http://vfpx.codeplex.com/releases). You can actually get all the source code for
FoxUnit on that site as well (more on that later).

If you download FoxUnit from VFPx, you start it by typing

DO <path>\FoxUnit.app

A Tour of FoxUnit
When you first fire it up there’s a form showing all of the tests it can find in the tests\
subfolder of the current folder (in this example, there are none yet).

http://vfpx.codeplex.com/releases

FoxUnit in Depth

Copyright 2016, Eric Selje Page 7 of 28

Here are the components of this User Interface:

Organize Tests

In FoxUnit, tests are organized into Test Classes, where each test class is a PRG on disk,
ideally in a Tests\ subfolder below the class library that’s being tested. Each test class
should contain all of the unit tests for one class. In the FoxTypes class library, for example, I
have the String class, so all of my unit tests for the String class should be in one FoxUnit
class. If I later decide to create a DateTime class in FoxTypes, the tests for that would go in
a separate test class.

I like to name my test classes something like StringTests so I can easily see what class I’m
testing. I might even go with FoxTypes_String_Tests to ensure I don’t have any confusion at
all.

FoxUnit allows you to open multiple Test Classes at once, which is handy if you want to test
all of the classes in your class library at the same time. For practical reasons you may want
to limit how many Test Classes you load simultaneously, but theoretically the limit is quite
large.

Run Tests

FoxUnit in Depth

Copyright 2016, Eric Selje Page 8 of 28

Click on of these buttons to run every test in all of the loaded Test classes, just the tests in
the same Test Class as the selected test, or just the one selected test. If your tests are fast it
should be no hardship to run All tests every time but as they accumulate you may find it
saves you time to run a subset.

If you do have a large number of tests that you’ve run you can click the
“Filter” button to bring up the Filter panel and whittle your test results down by
the Class Name, Test Name, or show only the Failed Tests, which are the ones that need
your attention.

Write Tests

The “Add” button will drop a template of a new test into your test class
for you to complete. “Edit” will jump you straight to the selected test in your test class for
you to modify (same as Double+Clicking). At this point there’s no “Delete” button but if you
Edit you can simply delete all of the code in the test method, and when you close the test
class the screen will refresh and the deleted test will be removed from the list.

Preferences

FoxUnit gives you many options to
customize your preferences. On the
Debugging tab you can opt whether to
automatically close the debugger after you
run tests. This is a nice option because the
debugger can be handy while you’re
running tests, but may get in the way
afterwards.

You can also choose whether to run the
Setup() and Teardown() code outside of the
Try…Catch. This will make more sense later when we start writing tests, but you probably
don’t want FoxUnit to consider errors in those methods as errors in your test itself, so I
recommend excluding them.

FoxUnit in Depth

Copyright 2016, Eric Selje Page 9 of 28

On the Interfacetab you can tweak
the user interface options. A new
option in FoxUnit 1.6 is the ability
to change which color signify
success and failure of tests. This is
useful for anyone who has
red/green color blindness. We also
recently added the ability to clear
previous test results when re-
running tests, which makes it
easier to see the progress of the
test run.

Besides Setup() and Teardown(),
you may have other methods in your test class that aren’t actually tests. If you want
FoxUnit to ignore those methods, create a naming convention for your tests. For example
all of my tests (and this isn’t my original idea or anything) start with the word “Test”. Then
in my test class I can set the icTestPrefix value to “Test”, check this box on the Interface tab,
and FoxUnit will ignore all the methods in my test class that do not start with “Test”.

Tests

The middle panel of the FoxUnit form shows the Tests that are loaded.

By default green indicates that the test passed the last time it was run, and red indicates it
failed. I’ve customized my colors slightly here but you get the idea. In the example above
(which are indeed the tests for FoxUnit itself) all of the tests passed except the last one on
the screen.

Errors

If any of the tests have errors, you can see those in the lower panel, along with a message
that you create when you write your tests.

FoxUnit in Depth

Copyright 2016, Eric Selje Page 10 of 28

In this example there wasn’t so much a failure of a test as it just hasn’t been implemented
yet. Note the splitter bar between the tests and the errors, allowing you to resize the panels
to your liking. You can also hit Ctrl+S to toggle the size of the tests to take up the whole
screen (and hide the results) or back to the default where the screen is split.

Messages

Much like DEBUGOUT, you can insert code into your tests to send messages to yourself.

Here’s the test that created that message:

 FUNCTION testNewTest
 This.MessageOut("Getting ready to run this test")
 RETURN This.AssertNotImplemented()

Status

At the very bottom of the screen is the status bar showing the results of the last test run,
including elapsed time.

FoxUnit in Depth

Copyright 2016, Eric Selje Page 11 of 28

Using FoxUnit
Returning now to the FoxTypes class library, let’s begin writing unit tests for our String
class to ensure the Format method works as we hope it will. We begin by starting FoxUnit
and creating a new Test Class. Clicking the New button brings up the New Test Class dialog:

Templates

FoxUnit allows you to base your Test Class on your own customized templates, which is
very handy if you or your company has them. They might contain some standard unit tests
that you want to make sure you include every time. The buttons along the right side of the
Templates allows you to create, remove, edit, or add an existing template file.

Templates are merely .TXT files with placeholders for the name of the TestClass. See
Appendix B for the standard FoxUnit test case template, which contains many comments,
hints for which properties you may want to set and sample test methods. Compare it with
Appendix C, the Minimal FoxUnit case template. Until you’ve become very familiar with the
settings I recommend sticking with the standard template.

You can also choose to forego a template and start by copying an existing test class, or
creating “stub” tests from a class. I’ll describe that new and most excellent feature later.

Code Options

Here you can set a couple of formatting preferences. You can use Beautify on your test class
just like any other code of course.

FoxUnit in Depth

Copyright 2016, Eric Selje Page 12 of 28

Save As

By default FoxUnit suggests putting your test classes in a Tests subfolder of the current
folder, which assumes your current folder contains the project or source code you’re
editing. You can elect to put your tests anywhere you’d like of course, but I do recommend
keeping your tests in the same directory structure as your source code.

Lastly you must name your test class, and as I mentioned earlier I recommend naming it
<ClassName>_Tests. So for our FoxTypes.String class it will be called String_Tests.

Once you click Create Test Class you’re dropped into the FoxPro code editor with code that
is the filled in version of the template you chose.

Notice that the Test Class itself is a subclass of a class that’s built into FoxUnit called
FxuTestCase. The class has the following properties by default:

• ioObjectToBeTested: FoxUnit test classes are designed to test one of your classes
at a time, and this property holds the name of that class. The Setup() method will
populate this property once for each test run you execute.

• icSetClassLib: This property holds the value of SET CLASSLIB() before you run your
tests, and FoxUnit will reset this after each test run. This honors the goal of unit
tests not having any side effects.

• IcTestPrefix: This property, which defaults to “TEST”, indicates the prefix of each of
your test methods. If you’ve ticked the box in the options to honor this property,
FoxUnit will only run tests whose names begin with this prefix.

The test class has the following methods that are exposed via the standard template:

• Setup(): This method is invoked once per test run, regardless of how many unit
tests will run. This is where you will instantiate the object you’re testing and set the
ioObjectToBeTested method so it’s available from all your unit tests.

• TearDown(): On the other end is this method, which is invoked after your test run
is complete. It restores your environment and releases the ioObjectToBeTested
instance.

FoxUnit in Depth

Copyright 2016, Eric Selje Page 13 of 28

If you add code to either Setup() or TearDown(), you should call DoDefault() to invoke the
code in the base class as well.

The FxuTestCase has the MessageOut() method that was mentioned earlier, which allows
you to send status messages to yourself while your tests are running. That’s very helpful for
times when you want to, say, do performance testing at the same time you’re unit testing to
see if a tweak you make affects the speed of your function as well as the result.

Assert
The Assert methods of the FxuTestCase class are the heart of the unit tests, indicating
whether a test succeeded or failed. What defines a success or failure depends on what you
were looking for in the test. Usually you’ll test that the function/method you’re testing
returns an expected result. The names of these methods makes their usage self-
explanatory:

AssertEquals

AssertEqualsArrays / AssertNotEqualsArrays

AssertFalse / AssertTrue

AssertHasError

AssertHasErrorNo

AssertIsObject / AssertIsNotObject

AssertNotEmpty

AssertNotNull

AssertNotNullOrEmpty

AssertNotImplemented

Preparing Our Test Class
Now that we’ve created our empty test class from the template, here are the steps to get it
ready for our unit tests:

1. Uncomment the lines that create the properties we’re going to use.
ioObjectToBeTested = .NULL.
icSetClassLib = SPACE(0)

Optionally if you’re using a test prefix other than the default “TEST”, you can set that
here as well
* icTestPrefix = "<Your preferred prefix here>"

2. Set those properties in the Setup() method by creating the object, in our case the

String class

FoxUnit in Depth

Copyright 2016, Eric Selje Page 14 of 28

3. Cleanup after yourself in the Teardown() method

Writing Unit Tests
With that preliminary work out of the way, it’s time to start writing some actual unit tests.
You don’t have to save and close the test class to start writing unit tests – you can just start
coding them as the next method within the DEFINE…ENDDEFINE of the test class.

If you do close the Test Class screen and then click the Add of the Unit Tests section of the
toolbar, FoxUnit will create a “stub” of a unit test for you
comments that suggest your next steps and a return value of
AssertNotImplemented() to indicate that this unit test has not
yet been created. This shows up as a failure on a run because it shows this test still needs
attention.

 FUNCTION testNewTest
 * 1. Change the name of the test to reflect its purpose. Test one thing only.
 * 2. Implement the test by removing these comments and the default assertion and
writing your own test code.
 RETURN This.AssertNotImplemented()

The first unit test I usually create just makes sure that the object I want to test actually got
created, so I change the default test to do that:
 FUNCTION TestObjectWasCreated

 THIS.AssertNotNull(THIS.ioObjectToBeTested, ;
 "Object was not instantiated during Setup()")

 ENDFUNC

Save the test class and Run it and rejoice in the successful test!

FUNCTION Setup
THIS.icSetClassLib = SET("CLASSLIB")
SET PROCEDURE TO STRING.prg ADDITIVE

THIS.ioObjectToBeTested = CREATEOBJECT("String")
ADDPROPERTY(_vfp, "STRING", THIS.ioObjectToBeTested)

 FUNCTION TearDown
 **

 THIS.ioObjectToBeTested = .NULL.
 REMOVEPROPERTY(_Vfp, "STRING")

 LOCAL lcSetClassLib
 lcSetClassLib = THIS.icSetClassLib
 SET CLASSLIB TO &lcSetClassLib

FoxUnit in Depth

Copyright 2016, Eric Selje Page 15 of 28

If the test failed, read the Failures and Errors message and figure out what went wrong.
You can set breakpoints in your unit tests just like any other FoxPro code if you must but
keep a couple of things in mind:

1. Breakpoints don’t seem to break on FoxPro lines that span across multiple lines.
2. If you have the “Close Debugger” option set in FoxUnit, the debugger will go away

when the test run is complete.

More Tests
One of the “tests” we did from the Command Line for our string class looked like this:

? _VFP.STRING.Format("Welcome to Southwest Fox {0}!", 2016)
Welcome to Southest Fox 2016

As a unit test it looks like this:

 FUNCTION TestStringOneParameter
 cResult = _vfp.String.FORMAT("Welcome to Southwest Fox {0}.", 2016)

FoxUnit in Depth

Copyright 2016, Eric Selje Page 16 of 28

 cExpected = "Welcome to Southwest Fox 2016."
 RETURN THIS.AssertEquals(cExpected, cResult "The strings do not match")
 ENDFUNC

Notice that I name my unit test with the expected prefix, “Test”, and then the name of the
class and then what I’m testing. Your naming convention can vary but this is a pretty
standard way of naming your unit tests.

I make a call to the function I’m testing and put it’s value into one variable, cResult, and
then put the value I’m expecting the function to return into another variable, cExpected.
Then I use the THIS.AssertEquals() method of the test class to compare the values.

The last parameter of all of the Assert() functions is a custom message that gets sent back
to the UI console. FoxUnit will automatically echo the Expected and Actual values back to
you so you don’t have repeat that information in this parameter.

For example, here’s what I’d get if I had left off the last period of the phrase in cExpected:

Can String.Format handle two parameters? Let’s write a test for it!

 FUNCTION TestStringMultipleStringParameters
 cResult = _vfp.String.FORMAT("The {0} in {1} falls {2} on the {3}.", "rain",
"Spain", "mainly", "plain")
 cExpected = "The rain in Spain falls mainly on the plain."
 RETURN THIS.AssertEquals(cExpected, cResult, "The strings do not match")
 ENDFUNC
(Notice the parameters are zero-based)

What happens if we use the same parameter twice? Let’s write a test for it!

 FUNCTION TestStringOneParameterReused
 cResult = _vfp.String.FORMAT("We have nothing to {0} but {0} itself.", "fear")
 cExpected = "We have nothing to fear but fear itself."
 RETURN THIS.AssertEquals(cExpected, cResult, "The strings do not match")
 ENDFUNC

Let’s run all of our tests and see how we’re doing:

FoxUnit in Depth

Copyright 2016, Eric Selje Page 17 of 28

Excellent – Four for Four! Many unit testers speak of the Pavlovian response they get when
they see a screenful of successful green tests, and I hope you’re beginning to see why.

What else might we want to test? For an existing method like the one we’re testing here
you’d want to run it throught its paces by throwing unexpected parameters, too many
parameters, and parameters of the wrong type. You also want to make sure you test all of
the code paths in your method. String.Format method is meant to copy all of the
functionality of C#’s String.Format and thus has the ability to convert dates and numbers to
strings in a variety of formats. Tests should be written to cover every possibility to ensure

FoxUnit in Depth

Copyright 2016, Eric Selje Page 18 of 28

they work correctly. Initially the tests will be “Not Implemented” of course, which are
indicates as failures here:

So I encourage you now to go back and write FoxUnit tests for all your existing business
objects. A daunting prospect, right? If only there were a way to automatically write tests
for all of the methods of a class in a class library.

Well now there is! Version 1.6 adds a new feature (which was actually written about in
FoxRockX quite a while ago but is only now making it into the codebase) which lets you
choose one of your classes, rather than a template, in order to create basic unit tests. These
unit tests will be unimplemented, but they’ll at least give you a starting point.

To do this, choose New from the Test Class group of buttons and select this button

You will be prompted to then select a
class library from either a VCX or PRG
on disk, and then be presented with a
list of all of the classes defined in the
class library.

Give your new test class a name, hit
Create, and voila! You now have a list
of unimplemented unit tests for all of
the methods in your class.

Of course you’ll have to actually write
the tests – this feature isn’t that smart!
But it does give you each class
method’s signature for making the call
which should help somewhat.

And don’t forget too that you’ll really
want to write far more than one test
for each method. Really run it through
its paces and make sure your code is
robust! I don’t know if you’ve seen this online ad but it addresses this very topic:

FoxUnit in Depth

Copyright 2016, Eric Selje Page 19 of 28

FoxUnit in Depth

Copyright 2016, Eric Selje Page 20 of 28

Test Driven Development
So far we’ve written unit tests for existing code, which is critical for ensuring that future
changes to that code don’t break our programs. “Test Driven Development” flips things
around so we write the tests beforewe write the code.

How can you write tests before you write the code you’re suppsed to be testing? Won’t the
tests fail? Absolutely – and that’s ok. Writing the tests first make you really think through
the design of your class and the implications of those design choices.

Later, as you consider more functionality, you’ll get in the habit of first writing the tests and
then writing the tests for that new functionality. It takes a while to get used to, and if you’re
like me you probably won’t do it every time religously. Try it out and if you see the benefits
of this paradigm then adopt it into your workflow.

Continuous Integration
Unit testing is only one step of the larger software development cycle, which also includes
checking out code, making your changes, committing the code, and deploying it. Ideally you
want to automate as many of these tasks as you can. Wouldn’t it be nice if you could, say,
automatically run all of your unit tests when you check in your changes to your source code
repository? If anyone’s changes “broke” the unit tests, you would get notified, but if
everything was copacetic then the changes would automatically get compiled and deployed
to the next step? That ideal is known as “continuous integration” and it’s made possible
using Continuous Integration servers.

For a deeper look at this cycle, check out my Southest Fox 2013 whitepaper “Will the Circle
Be Unbroken?”iv

The Continuous Integration Cycle

FoxUnit in Depth

Copyright 2016, Eric Selje Page 21 of 28

FoxUnit in the Continuous Integration Cycle
In 2014 Fernando Bozzo contributed changes to FoxUnit that allow it to run unit tests from
the Command Prompt and generate an artifact that a continuous integration server can
parse to determine if the unit tests passed or failed. While I’m not aware of any Continous
Integration servers that have prewritten plugins for Visual FoxPro and FoxUnit specifically,
they all allow users to write generic plugin scripts. When choosing a Continous Integration
server one of the main considerations should be whether you know the scripting language
that it uses for the plugins. Another consideration is whether the plugin requires the unit
test results to go to “StdOut” (ie the Windows Console) or can be sent to a file. Visual
FoxPro does not have the ability to write to StdOut, so any CI servers that require that for
its pipeline should not be a consideration.

Conclusion
The benefits of writing unit tests should be clearer now. Unit tests not only ensure you
haven’t broken existing code when making modifications, but if you follow the principles of
Test Driven Development, unit tests will clarify your purpose before you begin coding, and
direct you once you begin. The unit tests themselves becomes something of a to-do list. And
you get to know earlier in the process that things have gone awry which should save you
time and your client money.

Clarity and peace of mind are two things we could all use more of, and FoxUnit is a tool to
get us there.

I welcome feedback on this whitepaper, and the session itself, as well as any interest you
may have in furthering the FoxUnit cause on VFPx. There are many features I’d still love to
see added to FoxUnit, such as the ability to watch the filesystem and run tests automatically
in the background when a class that has tests gets changed, or the ability to run FoxUnit
from the command line. Other platforms’ unit testers have these abilities, and we should
too! Get in touch with me using the information on the cover page.

FoxUnit in Depth

Copyright 2016, Eric Selje Page 22 of 28

Appendix A: FoxTypes Class
DEFINE CLASS String AS CUSTOM

 **
 FUNCTION Format
 **
 * Mimics the String.Format() Method of NET
 **
 LPARAMETERS cString, vPara0, vPara1, vPara2, vPara3, vPara4, vPara5, vPara6,
vPara7, vPara8, vPara9
 LOCAL nCount, cCount, cReturn, cSearch, cFormat
 cReturn = cString
 FOR nCount = 1 TO OCCURS("{", cString)
 cSearch = STREXTRACT(cString, "{", "}", nCount, 4)
 cFormat = STREXTRACT(cSearch, ":", "}")
 cCount = CHRTRAN(STRTRAN(cSearch, cFormat,""), "{:}","")
 IF EMPTY(cFormat)
 cReturn = STRTRAN(cReturn, cSearch,
TRANSFORM(EVALUATE("vPara"+cCount)))
 ELSE
 xParam = EVALUATE("vPara"+cCount)
 DO CASE
 CASE INLIST(VARTYPE(xParam),'D','T')
 cReturn = STRTRAN(cReturn, cSearch, This.DateFormat(xParam,
cFormat))
 CASE INLIST(VARTYPE(xParam),'N','Y')
 cReturn = STRTRAN(cReturn, cSearch, This.NumericFormat(xParam,
cFormat))
 OTHERWISE
 cReturn = STRTRAN(cReturn, cSearch, TRANSFORM(xParam,cFormat))
 ENDCASE
 ENDIF
 ENDFOR
 RETURN cReturn

 PROTECTED FUNCTION DateFormat
 LPARAMETERS dtConvert, cFormat
 LOCAL cDate, cCentury, dConvert, cResult
 cResult = ""
 IF VARTYPE(dtConvert)="D"
 dConvert = dtConvert
 dtConvert = DTOT(dConvert)
 ELSE
 dConvert = TTOD(dtConvert)
 ENDIF
 IF LEN(cFormat)=1
 IF INLIST(cFormat, 'r', 'u', 'U')
 * Adjust time to GMT
 DECLARE INTEGER GetTimeZoneInformation IN kernel32 STRING
@lpTimeZoneInformation
 LOCAL cTimeZone, iBiasSeconds
 cTimeZone = REPL(Chr(0), 172)

FoxUnit in Depth

Copyright 2016, Eric Selje Page 23 of 28

 GetTimeZoneInformation(@cTimeZone)
 iBiasSeconds = 60 * INT(ASC(SUBSTR(cTimeZone, 1,1)) + ;
 BitLShift(ASC(SUBSTR(cTimeZone, 2,1)), 8) +;
 BitLShift(ASC(SUBSTR(cTimeZone, 3,1)), 16) +;
 BitLShift(ASC(SUBSTR(cTimeZone, 4,1)), 24))
 dtConvert = dtConvert - iBiasSeconds
 dConvert = TTOD(dtConvert)
 ENDIF
 DO CASE
 CASE cFormat='d' && Short date 10/12/2002
 cResult=TRANSFORM(dConvert, "@YS")
 CASE cFormat='D' && Long date December 10, 2002. Can't use @YL
 cFormat='MMM dd, yyyy'
 CASE cFormat='f' && Full date & time December 10, 2002 10:11 PM
 cFormat='MMMM dd, yyyy hh:mm tt'
 CASE cFormat='F' && Full date & time (long) December 10, 2002 10:11:29
PM
 cFormat='MMMM dd, yyyy hh:mm:ss tt'
 CASE cFormat='g' && Default date & time 10/12/2002 10:11 PM
 cFormat='dd/MM/yyyy hh:mm tt'
 CASE cFormat='G' && Default date & time (long) 10/12/2002 10:11:29 PM
 cFormat='dd/MM/yyyy hh:mm tt'
 CASE cFormat='M' && Month day pattern December 10
 cFormat='MMMM dd'
 CASE cFormat='r' && RFC1123 date string Tue, 10 Dec 2002 22:11:29 GMT
 cFormat='ddd, dd MMM yyyy hh:mm:ss GMT'
 CASE cFormat='s' && Sortable date string 2002-12-10T22:11:29
 cResult = TTOC(dtConvert,3)
 CASE cFormat='t' && Short time 10:11 PM
 cFormat='hh:mm tt'
 CASE cFormat='T' && Long time 10:11:29 PM
 cFormat='hh:mm:ss tt'
 CASE cFormat='u' && Universal sortable, local time 2002-12-10 22:13:50Z
 cFormat='yyyy-MM-dd hh:mm:ddZ'
 CASE cFormat='U' && Universal sortable, GMT December 11, 2002 3:13:50
AM
 cFormat="MMMM dd, yyyy hh:mm:ss tt"
 CASE cFormat='Y' && Year month pattern December, 2002
 cFormat="MMMM, yyyy"
 ENDCASE
 ENDIF
 IF EMPTY(cResult) AND LEN(cFormat)>1
 cResult=This.ParseDateFormat(cFormat, dtConvert)
 ENDIF
 RETURN cResult

 PROTECTED FUNCTION ParseDateFormat
 LPARAMETERS cFormat, dtVar
 cFormat=STRTRAN(cFormat,"hh", PADL(HOUR(dtVar),2,'0'))
 cFormat=STRTRAN(cFormat,"mm", PADL(MINUTE(dtVar),2,'0'))
 cFormat=STRTRAN(cFormat,"ss", PADL(SEC(dtVar),2,'0'))
 cFormat=STRTRAN(cFormat,"MMMM", CMONTH(dtVar))
 cFormat=STRTRAN(cFormat,"MMM", LEFT(CMONTH(dtVar),3))
 cFormat=STRTRAN(cFormat,"MM", PADL(MONTH(dtVar),2,'0'))

FoxUnit in Depth

Copyright 2016, Eric Selje Page 24 of 28

 cFormat=STRTRAN(cFormat,"ddd", LEFT(CDOW(dtVar),3))
 cFormat=STRTRAN(cFormat,"dd", PADL(DAY(dtVar),2,'0'))
 cFormat=STRTRAN(cFormat,"yyyy", TRANSFORM(YEAR(dtVar)))
 cFormat=STRTRAN(cFormat,"yy", RIGHT(TRANSFORM(YEAR(dtVar)),2))
 cFormat=STRTRAN(cFormat,"tt", IIF(HOUR(dtVar)<12,"AM","PM"))
 RETURN cFormat

 PROTECTED FUNCTION NumericFormat
 LPARAMETERS nConvert, cFormatCode
 LOCAL cResult, cFormat
 cResult = ""
 cFormat = UPPER(LEFT(cFormatCode,1))
 iWidth = VAL(SUBSTR(cFormatCode,2))
 DO CASE
 CASE cFormat='D' AND nConvert=INT(nConvert) && Decimal
 cResult=TRANSFORM(nConvert)
 CASE cFormat='E' && Exponential
 cResult=TRANSFORM(nConvert, "@^")
 CASE INLIST(cFormat,'C','F','P') && Fixed # of decimal place (default 0)
 IF cFormat='P'
 nConvert = nConvert * 100
 ENDIF
 cResult=ALLTRIM(TRANSFORM(nConvert,
REPLICATE('9',12)+IIF(iWidth<=0,'','.'+REPLICATE('9',iWidth))))
 IF cFormat='C'
 cResult = '$'+cResult
 ELSE
 IF cFormat='P'
 cResult = cResult + '%'
 ENDIF
 ENDIF

 CASE cFormat='G' && General
 cResult=TRANSFORM(nConvert)
 CASE cFormat='N' && Numeric
 cResult=TRANSFORM(nConvert)
 CASE cFormat='P' && Percent
 iWidth = IIF(LEN(cFormat)=1,2,iWidth) && Default to 2 decimal places
 cResult= TRANSFORM(nConvert*100) +'%'
 CASE cFormat='R' && Round
 cResult=TRANSFORM(nConvert)
 CASE cFormat='X' && Hex
 cResult=TRANSFORM(nConvert, "@0")
 ENDCASE

 RETURN cResult

ENDDEFINE

FoxUnit in Depth

Copyright 2016, Eric Selje Page 25 of 28

Appendix B – The Standard FoxUnit Test Case Template
**
DEFINE CLASS <<testclass>> as FxuTestCase OF FxuTestCase.prg
**
 #IF .f.
 *
 * this LOCAL declaration enabled IntelliSense for
 * the THIS object anywhere in this class
 *
 LOCAL THIS AS <<testclass>> OF <<testclass>>.PRG
 #ENDIF

 *
 * declare properties here that are used by one or
 * more individual test methods of this class
 *
 * for example, if you create an object to a custom
 * THIS.Property in THIS.Setup(), estabish the property
 * here, where it will be available (to IntelliSense)
 * throughout:
 *
! ioObjectToBeTested = .NULL.
! icSetClassLib = SPACE(0)

 * the icTestPrefix property in the base FxuTestCase class defaults
 * to "TEST" (not case sensitive). There is a setting on the interface
 * tab of the options form (accessible via right-clicking on the
 * main FoxUnit form and choosing the options item) labeld as
 * "Load and run only tests with the specified icTestPrefix value in test
classes"
 *
 * If this is checked, then only tests in any test class that start with the
 * prefix specified with the icTestPrefix property value will be loaded
 * into FoxUnit and run. You can override this prefix on a per-class basis.
 *
 * This makes it possible to create ancillary methods in your test classes
 * that can be shared amongst other test methods without being run as
 * tests themselves. Additionally, this means you can quickly and easily
 * disable a test by modifying it and changing it's test prefix from
 * that specified by the icTestPrefix property

 * Additionally, you could set this in the INIT() method of your derived class
 * but make sure you dodefault() first. When the option to run only
 * tests with the icTestPrefix specified is checked in the options form,
 * the test classes are actually all instantiated individually to pull
 * the icTestPrefix value.

! icTestPrefix = "<Your preferred prefix here>"

 **
 FUNCTION Setup
 **
 *

FoxUnit in Depth

Copyright 2016, Eric Selje Page 26 of 28

 * put common setup code here -- this method is called
 * whenever THIS.Run() (inherited method) to run each
 * of the custom test methods you add, specific test
 * methods that are not inherited from FoxUnit
 *
 * do NOT call THIS.Assert..() methods here -- this is
 * NOT a test method
 *
 * for example, you can instantiate all the object(s)
 * you will be testing by the custom test methods of
 * this class:
! THIS.icSetClassLib = SET("CLASSLIB")
! SET CLASSLIB TO MyApplicationClassLib.VCX ADDITIVE
! THIS.ioObjectToBeTested = CREATEOBJECT("MyNewClassImWriting")

 **
 ENDFUNC
 **

 **
 FUNCTION TearDown
 **
 *
 * put common cleanup code here -- this method is called
 * whenever THIS.Run() (inherited method) to run each
 * of the custom test methods you add, specific test
 * methods that are not inherited from FoxUnit
 *
 * do NOT call THIS.Assert..() methods here -- this is
 * NOT a test method
 *
 * for example, you can release all the object(s)
 * you will be testing by the custom test methods of
 * this class:
! THIS.ioObjectToBeTested = .NULL.
! LOCAL lcSetClassLib
! lcSetClassLib = THIS.icSetClassLib
! SET CLASSLIB TO &lcSetClassLib

 **
 ENDFUNC
 **

 *
 * test methods can use any method name not already used by
 * the parent FXUTestCase class
 * MODIFY COMMAND FXUTestCase
 * DO NOT override any test methods except for the abstract
 * test methods Setup() and TearDown(), as described above
 *
 * the three important inherited methods that you call
 * from your test methods are:
 * THIS.AssertTrue(<Expression>,"Failure message")
 * THIS.AssertEquals(<ExpectedValue>,<Expression>,"Failure message")
 * THIS.AssertNotNull(<Expression>,"Failure message")

FoxUnit in Depth

Copyright 2016, Eric Selje Page 27 of 28

 * all test methods either pass or fail -- the assertions
 * either succeed or fail

 *
 * here's a simple AssertNotNull example test method
 *
! ***
! FUNCTION TestObjectWasCreated
! ***
! THIS.AssertNotNull(THIS.ioObjectToBeTested, ;
! "Object was not instantiated during Setup()")
! ***
! ENDFUNC
! ***

 *
 * here's one for AssertTrue
 *
! ***
! FUNCTION TestObjectCustomMethod
! ***
! THIS.AssertTrue(THIS.ioObjectToBeTested.CustomMethod()), ;
 "Object.CustomMethod() failed")
! ***
! ENDFUNC
! ***

 *
 * and one for AssertEquals
 *
! ***
! FUNCTION TestObjectCustomMethod100ReturnValue
! ***
!
! * Please note that string Comparisons with AssertEquals are
! * case sensitive.
!
! THIS.AssertEquals("John Smith", ;
! THIS.ioObjectToBeTested.Object.CustomMethod100(), ;
! "Object.CustomMethod100() did not return 'John Smith'",
! ***
! ENDFUNC
! ***

**
ENDDEFINE
**

FoxUnit in Depth

Copyright 2016, Eric Selje Page 28 of 28

Appendix C – Minimal FoxUnit Test Case Template
**
DEFINE CLASS <<testclass>> as FxuTestCase OF FxuTestCase.prg
**

 #IF .f.
 LOCAL THIS AS <<testclass>> OF <<testclass>>.PRG
 #ENDIF

 **
 FUNCTION Setup
 **

 **
 ENDFUNC
 **

 **
 FUNCTION TearDown
 **

 **
 ENDFUNC
 **

**
ENDDEFINE
**

i http://west-wind.com/WestwindClientTools.aspx
ii
http://www.tomorrowssolutionsllc.com/Conference%20Sessions/Getting%20Your%20Head%20Around%2
0Business%20Objects.pdf
iii FoxUnit 1.6 will be released around the same time as Southwest Fox 2016
iv http://saltydogllc.com/wp-content/uploads/SELJE_Continuous-Integration-with-VFP.pdf

	Introduction
	What is “Unit Testing”

	Installing FoxUnit
	A Tour of FoxUnit

	Using FoxUnit
	Assert
	Preparing Our Test Class
	Writing Unit Tests

	Test Driven Development
	Continuous Integration
	FoxUnit in the Continuous Integration Cycle

	Conclusion
	Appendix A: FoxTypes Class
	Appendix B – The Standard FoxUnit Test Case Template
	Appendix C – Minimal FoxUnit Test Case Template

