
Will the Circle Be Unbroken? 
Continuous Integration and 

Visual FoxPro 

Eric Selje 
Salty Dog Solutions, LLC 

Madison WI 
Voice: 708-4NaClK9  

Twitter: EricSelje  
Email:Eric@SaltyDogLLC.com  

 

 

This whitepaper discusses improving the Software Development Lifecycle for Visual FoxPro 
developers. We'll begin by reviewing the typical development cycle, and show ways to improve 
and automate our current process using a Continuous Integration server and open source tools 
from VFPX such as Automated Build, FoxUnit, and SubFox.  



A Typical Day in the Life of a VFP Programmer 
Eric (his name has been changed to protect his identity) is a typical Visual FoxPro 
developer. Eric got on board very early with the Fox. He learned very quickly in the late 80s 
that dBase was great but FoxBase was far better. Eric was very excited to when FoxPro 
came out, and when Visual FoxPro 3.0 arrived in 1995, his development careeer changed 
forever.  

But in some ways Eric’s Visual FoxPro career hadn’t changed much since. New version of 
Visual FoxPro arrived regularly (up until recently), but the basic way he created 
applications was consistent throughout.  

The Project Manager was always Visual FoxPro’s command center for development. When 
Eric wanted to work on an application, he’d fire up Visual FoxPro, open the project in the 
Project Manager, and do what needed doing.  Testing involved running the application and 
verifying it “did what it was supposed to do.” Version control meant hopefully 
remembering to backup the application’s source code directory. Deploying meant building 
an EXE and copying to someplace where the users could get at it, and likely meant kicking 
everybody out of the application so the update could be copied. It happened so often the 
users didn’t think twice about it, assuming this was just the way it had to be. Eric too 
thought this was the way all programmers did it. Perhaps you do too?   

It doesn’t have to be this way. 

Eric’s slow realization of this truth came when he left the insular world of Visual FoxPro 
development and was exposed to what other programmers did. He started hearing words 
he didn’t understand, like “Git” when there were no horses around, and “Mercurial” when 
there were no running backs. He started seeing applications that would automatically 
update themselves while the user was still running them, and “Nightly Builds” dropping 
onto servers at times when all the developers should long have been home in bed. 

When Eric finally discovered the powerful concept of “Continuous Integration,” his mind 
was blown. This was a concept that would once again change the way he developed forever 
– if he could get it all to work in Visual FoxPro. 



 

I imagine that story makes you cringe. Just writing it started stirrings of PTSD inside of me. 
Now let’s investigate how Visual FoxPro developers like Eric can use Continuous 
Integration so that none of us will ever have to suffer through an experience like that again. 

What is Continuous Integration?  
At the most basic level, Continuous Integration (CI) means letting a tool, a Continuous 
Integration Server, automate the day-to-day tasks that you have been doing manually.  That 
means automatically running the tests to ensure your code is good, building the EXE from 
the project’s source code, and copying the EXE to a place where others can get at it.  

A True Story 
It’s the middle of the night. Your phone rings once, twice…on the third ring 
you pick it up. It’s your boss (or best client, whichever is applicable to you). 

Groggily you say “Hello?” while hearing a sigh from your tossing spouse.” 

“Hey!” you hear, causing you to pull the phone two inches away from your 
ear. “All of our nightly reports are crashing! Fix it!” 

Now slightly awake, you see it’s 3 a.m. The reports just kicked in and 
immediately failed. You try to get it together enough to recollect what you 
may have done that day that would have caused this failure, and you’re 
actually hoping it was your fault because if it was another developer then 
you’re going to have to murder someone on your team and then have to go 
through the trouble of finding a replacement. 

Eventually your synapses recall that one small optimization you made to the 
function that most of the reports use. Yes, that’s it. Easy fix…I’ll just put that 
change back. Since your company doesn’t reliably use version control, you’ll 
hopefully remember what the code looked like before and put it back right.  

You fire up the laptop, make the change, build it, log onto your VPN, call the 
office, wait while everyone is out of the app, and copy the new EXE to the 
three or four different places it needs to go for everything to run smoothly 
until you get to your desk in… only 3 hours?!  

That “one little fix” took very little time to actually fix but quite a bit of time 
to build and deploy. You hope it works, but you’ll find out if it failed when the 
phone rings again just as you’re drifting back to sleep. 

 



Some Visual FoxPro developers have concocted a collection of scripts and batch files to do 
much of this mundanity, but a true CI Server is a comprehensive, integrated tool with hooks 
you can tap into in order to consolidate those disparate scripts under one management 
tool.  A CI server gives you the extra functionality of creating status reports that can be 
emailed and web dashboards that allow you to quickly ascertain the status of all of your 
projects at a glance. 

How much would you pay for this amazing Continuous Integration awesomeness? Well, 
you could pay a lot as there are commercial products available. On the other hand you 
could not pay anything at all. Let’s look at some of our options. 

Continuous Integration Servers 
There are quite a few CI servers available 1, but here are some that are probably most likely 
to be used by Visual FoxPro developers: 

Commercial Offerings 
Team Foundation Server (TFS): This is Microsoft’s official offering. It’s much more than 
just a CI server, it is also the successor to Visual SourceSafe for version control, has a 
facility for project task list tracking, and reporting. This is commonly used in Microsoft-only 
shops and, in my experience, rarely used elsewhere. 

TeamCity: This program from JetBrains, the Resharper folks, is the most common name I 
hear when I ask which Continuous Integration product other developers are using. It is 
built to be language-agnostic so it works well with .Net, Java, Ruby, etc., and with plug-ins 
can be modified to work with Visual FoxPro as well. While I’ve listed here as Commercial, 
it’s actually free for “small teams.” 

Free and Open Source 
CruiseControl: This open-source framework was the first one I used because Markus 
Winhard had already written a configuration file for Automated Build. The original 
CruiseControl was written in Java but was ported over to the .Net framework in a fork 
called CruiseControl.Net.  

Jenkins: Jenkins is my current open-source favorite. It’s very simple to install, has a very 
small footprint on my development machine, and is infinitely configurable. Jenkins is the 
tool I’ll be using in my session and for this whitepaper.  

This is not intended to be a comprehensive list. Please do some research before deciding which 
CI server is right for you. 

 

When you’ve chosen and installed your Continuous Integration server and integrated all 
the plug-ins you need for your project, you will have a complete system that allows you to 

1 http://en.wikipedia.org/wiki/Continuous_integration  

                                                        

http://en.wikipedia.org/wiki/Continuous_integration


deploy software in a repeatable, efficient manner that decreases errors and increases your 
productivity.  

This diagram shows the continuous integration cycle. The cycle begins when the 
developers at the top check in their source control to the central repository. That causes 
the CI Server to run Unit Tests, Integration Tests, Functional Tests, Code Analysis, and 
whatever else you’ve plugged in. If the tests fail, the check-in will be rolled back, but if they 
succeed the project will be compiled into an EXE. If the build passes (no compilation 
errors), it can proceed to deploying the final product to wherever it eventually goes. All 
along the way reports can be generated and sent to the project team to apprise them of the 
status of the project. 

 

Ideally the tests pass, the build is created, the executable is deployed, the client is updated, 
the developers are notified, and the cycle starts again. The question then becomes, to 
borrow a title from a classic, “Will the Circle Be Unbroken?” 
  

Figure 1: The Continuous Integration Cycle 



Setting up a Continuous Integration Server 
To start, let’s set up a CI Server. This can be on your development machine (which is the 
way I do it), a Windows server on your network, or a virtual machine in “the cloud.” It 
really doesn’t matter where it’s physically located, but if it’s on your development machine 
you are limiting the scale to just one developer. If you think there’s a chance you’ll ever 
involve more than one developer, or you feel more comfortable putting your eggs in 
different baskets, consider putting the CI Server somewhere else.  

You might imagine that a CI service needs to be running on a powerful server somewhere 
but this definitely not the case. It can run on any machine that has access to the source 
control as well as any additional tools required to do its job such as the Build tool. It does 
have to be a Windows machine though, because Visual FoxPro projects are Windows-only 
and require a Windows machine to build them. 

Step 1: Use Source Control 
Version control, while not absolutely necessary, is preferred because CI servers have the 
ability to monitor repositories of the most popular types, and usually a source code check-
in is the trigger that fires the entire CI process. Hopefully by now you’ve begun taking 
advantage of version control! Even if you don’t work with other developers, you need to be 
doing this. 

If you don’t have an offline repository yet, just search the web for any number of 
free/cheap ones. In this figure I setup a free repo on ProjectLocker and joined my test 
project to it in less than five minutes. 

Serial Killer 
One quirk of Visual FoxPro is that much of the source code is stored in binary files (actually 
VFP tables themselves) rather than text files. Binary files are problematic for version 
control systems because it’s rather difficult to “diff” them. The solution for VFP developers 
then as always been to serialize the table, i.e. turn it into an equivalent ASCII text file.  

Projects that have been “Joined to Source Control” using Visual FoxPro’s built-in 
functionality automatically get their binaries serialized via the native SCCTEXT.prg. This is 
an inferior program and has long been superseded by any number of projects, including 
VFPX’s SubFox and SCCTEXTX, Christoph Wollenhaupt’s TwoFox, or Toni Feltman’s 
F1Utils.  

If you prefer to do version control from the Windows filesystem, you can use the fine 
Tortoise tools for Subversion or Mercurial. Tortoise integrates right into Windows 
Explorer.  Tortoise doesn’t serialize the binaries for you automatically though, so you will 
need to be sure to take care of that manually using one of the tools mentioned above. 
SubFox does have some nice hooks into Tortoise that automates the process. 



The problem with all of these tools however is that invoking the serializer/deserializer is a 
manual process2, and with Continuous Integration we need things to run automatically. 
Whichever of those tools you use, some customization will be necessary in order to get 
them to run from the Windows shell in order to be integrated into Continuous Integration. 

For this reason, I recommend that you do check in the binaries into your version control 
system along with the serialized version. That way they won’t need to be deserialized when 
you run an automated build, saving you this manual step. 

The exception to this rule is the PJX/PJT files: Do not check those into version control. 
Automated Build, in the next step, will recreate the PJX file from the “PJM” file that’s 
generated. Just be sure to check in your PJM file!   

Step 2: Install Automated Build 
This is the utility that takes your source control and creates an EXE out of it. Visual FoxPro 
developers have always had to do this manually by clicking on the Build button in the 
Project Manager. Now we also have Automated Build, another VFPX tool, to compile EXEs 
from the command line. 

Automated Build was written by Markus Winhard. It’s actually just one PRG, 
BuildProject.prg along with a few supporting files. See the full documentation on VFPX, but 
the installation is basically just copying the files needed to a folder. 

Tip: You might be tempted to create an EXE so you run Automated Build without needing a 
full VFP deployment; However Automated Build uses the command BUILD PROJECT, which 
is unsupported in the VFP Runtime. You’ll have to copy the minimum files needed to run 
the full Visual FoxPro onto your CI server. This means you’ll need a fully licensed copy of 
VFP for your CI server if it’s a separate machine than your development machine. 

If you use CruiseControl.Net as your CI server, Automated Build has sample configuration 
plug-in files that make it very easy to inject AutomatedBuild into your CI Cycle. For Jenkins 
we’ll have to configure things ourselves as well, which we will do later when we set up a 
real job. 

GenPJM 
BuildProject takes as a parameter the name of a PJM file, which is the serialized version of 
the project’s PJX/PJT file. If your project is joined to a source control provider, the PJM is 
created automatically for you. If not, you will need to generate that PJM manually.  A recent 
addition to the Automated Build project on VFPX is GenPJM.prg, which will serialize your 
project’s binary into a PJM file that Automated Build can use.   

2 SubFox’s hooks do deserialize binaries automatically when you check out files from the Tortoise interface, 
so it may have potential to from a command line, but this needs further investigation into the source code. 
The other tools could have wrappers written that allow them to do it as well. 

                                                        



Tip: Call GenPJM from a ProjectHook whenever the project is modified, saved, or built so you 
don’t have to remember to do it manually. Remember, one goal of CI is to automate as much 
as possible! 

BuildProject recreates the PJX file from the PJM, compiles the source code, and creates 
output that the Continuous Integration server can parse and act on.  

Are we done? 

You could stop right there and just have a CI server that automates builds periodically or 
whenever you check in source control. That alone would probably save you a lot of time 
and effort.  Let’s not stop there - let’s add a couple more things to really create a 
professional development environment. 

Step 3: Set up Unit Testing Framework 
(Optional, but Desirable) 

Unit testing is often the first tool fired in the CI cycle, occurring right after new source code 
is checked into the repository. A good CI server can be configured to proceed to a build only 
after the source code passes the unit tests, or rollback a check-in that causes unit tests to 
fail and send the developer that tried to check in the failing code a detailed report of the 
results.  

Visual FoxPro developers have the excellent FoxUnit framework to allow them to 
interactively create and run unit tests while they’re developing, but that doesn’t help us in 
an automated environment. Now that FoxUnit has also moved to VFPX, an effort is 
underway to expand its functionality to allow tests to be run from the command line so 
they can be integrated into a Continuous Integration tool. 

John Miller wrote an excellent article for CoDE Magazine  that details the work you need to 
do in order to make FoxUnit work with Team Foundation Server. Only slight modification is 
needed to customize it to the Continuous Integration framework of our choice, Jenkins.  

And More 
Continuous Integration Servers have “hooks” that allow you to plug-in any number of 3rd 
party tools. Properly modified, it would be possible to integrate tools into your software 
development lifecycle that check for “code smells”, plug into your issue tracking system or 
project management, deploy the software to FTP servers or Content Delivery Networks, 
and so much more.  

Final Step: Set up a Continuous Integration Framework 
Finally we have arrived at the most necessary step of all in order to implement Continuous 
Integration, setting up the CI Server itself. I’m going to use Jenkins, a popular open-source 
Continuous Integration framework. You can read all about the interesting history of Jenkins 
here. Installing Jenkins on Windows is trivial, just download the .ZIP file and run the 
SETUP.EXE on the machine that will serve as your Continuous Integration server.  

http://www.code-magazine.com/articleprint.aspx?quickid=0703102
http://jenkins-ci.org/


After installing Jenkins, you’ll have a new service running on that machine which is setup to 
run automatically when the machine starts. This is likely what you want but you can flip it 
to start manually if you’d rather. 

The service monitors a port on your machine, which by default is 8080. Fire up a browser 
and navigate to the servername:8080 and you’ll see the basic Jenkins dashboard (Figure 2). 

 

Figure 2: Jenkins Dashboard 

  

Start by configuring Jenkins to your liking by clicking the “Manage Jenkins” link to get the 
configuration page (Figure 3). Notice how Jenkins can check back with its home server and 
lets you know when it is out of date. You can update with the click of a button. Nice. 

 

 

Figure 3: Jenkins Management Screen 



On the “Configure System” screen, you’ll want to verify/change which port you’re using for 
Jenkins (Figure 4), as well as set up the email settings in order to receive notifications 
(Figure 5). 

 
Figure 4: Configure Jenkins Port Number 

 
Figure 5: Configure Jenkins to send general EMail Notifications 

Creating a Job in Jenkins 
After Jenkins is configured we can proceed to create our first “job”. Jobs are somewhat 
analogous to “Scheduled Tasks” in Windows (or cron jobs in *nix), in that they’ll run on a 
schedule or when a specific event happens. 

 

Figure 6: Creating a new "Job" in Jenkins 

For our job we’ll create a “free-style” project, giving us the most flexibility since we use a 
non-standard setup.  First we name and describe our project, and perhaps give it a few 
other options like how many old builds to keep around (Figure 6: Name and Describe the 
Job). 



 
Figure 7: Name and Describe the Job 

Next we can set even more options (Figure 7: Advanced job options), like a “Quiet Period”, 
which sets an interval between each build. This is useful when you have quite a few 
developers submitting code a lot, to prevent the build from constantly firing every time a 
new submission comes in. In Figure 7 I’ve throttled Jenkins to at most do one build every 
10 minutes (6,000 seconds). 
 
By default, the “workspace” for a build is in a folder underneath the default Jenkins install 
folder (e.g. C:\Program Files (x86)\Jenkins\jobs\<project name>\workspace). You might 
want it to be somewhere else though, especially on Windows machines so you don’t 
succumb to the virtualization issues that come with writing files under C:\Program Files. I 
prefer creating my workspaces under C:\ProgramData. 

  
Figure 8: Advanced Job options 

 
  



Configuring Your Source Control 
The next step is to tell Jenkins where your source code is checked in (Figure 8).  Out of the 
box (I guess that expression doesn’t really apply these days) Jenkins supports CVS and 
Subversion, but there are plug-ins for Mercurial, Git, and probably just about any other 
version control system out there. 

 

Figure 9: Source Code Management 

 

Note again that linking your CI Server to your source control isn’t absolutely necessary. If 
you choose not to link them, you will lose the ability to do a build automatically when 
source code is checked in. That may not be an issue for you if you’d rather just do a build on 
a regular schedule or create a build manually. If that’s the case just select “None” for source 
control and you can set your development folder as your Workspace. You will lose a lot of 
scalability doing things this way, but it might be all you need. 

If you checked your binaries (VCX, SCX, FRX, etc) into source control as I suggested, you 
now have an extra step: You have to deserialize the text files back into binaries before you 
can do the build because VFP unfortunately can’t build based on the serialized version 
(which is unfortunate really, because one would think that internally it’s reserializing the 
binaries before it does its compilation anyway). There are a variety of ways to do that 
depending on how they were serialized but most would involve writing a wrapper around 
whichever technique you used to serialize in the first place. There is a lot of opportunity for 
some VFPX volunteer work to be done here.  

Set Up the Build 
The most important step is to actually build the EXE (or DLL) from our project. That means 
telling Jenkins when to build and how to do it. Using the Build Triggers (Figure 10), you can 
instruct Jenkins to poll the Source Control repository if you set one up in the previous step, 
build periodically using a very flexible syntax, or build after other Jenkins projects get 
successfully built, which is great for projects that are dependent on other projects. 



 

Figure 10: Scheduling an Automated Build 

You don’t have to schedule the build at all. Anytime you want to build you can fire up the 
Jenkins dashboard and click on the “Schedule Build” icon. That will queue up a build to 
begin immediately. 

 
Figure 11: Build manually anytime by queueing up a build with this button 

Tip: Hover over that icon and look at the address bar on the bottom of the browser. 
Because Jenkins is web-based and has a well-written API, you can use that same URL to 
invoke a build (e.g. http://(CI_Server):8080/job/(Project)/build?delay=0sec). Just add a 
button to your VFP Developer Toolbar (which is very easy if you use Thor) that calls that 
URL (simple with a RUN /N CURL.exe or either WestWind IP Stuff or VFP2C32) and you can 
have a build fire at the push of a button. 

The last step in scheduling a build is telling Jenkins how to do the build (again, Figure 10). 
Here we’re using the full version of VFP (because we need to use the BUILD PROJECT 
command) to call automated build (BuildProject.prg). The syntax for BuildProject is 
BuildProject.prg PJMFile [ManifestType, EXE Name] 

PJMFile is the name of the serialized PJX file created with either GenPJM or our source 
control tool if you’ve joined your project to source control. 

ManifestType is either ADMIN or USER to indicate the execution level (default is USER). 

Once you’ve got your Build action described, go ahead and test it by clicking on the icon to 
queue up a build immediately (Figure 11). You should see the “Last Success” time update 
automatically and a pretty sun icon to indicate all is well. Clouds would indicate things 
aren’t going so well. Clearly the developers of Jenkins aren’t goth. 

Failed Builds 
If an Automated Build fails, perhaps because of a syntax error or a missing file or anything 
else that can cause a build to fail, it currently just sits there and doesn’t exit properly. 
Markus is aware of this problem and we’ve spent some time trying to figure out quite why 
it’s happening, but it turns out there’s a nice workaround in Jenkins for this so it doesn’t 
break things at all.  

http://(ci_server):8080/job/(Project)/build?delay=0sec)
http://www.west-wind.com/wwipstuff.aspx
https://vfpx.codeplex.com/wikipage?title=VFP2C32&referringTitle=Home


If you go back to the root of the dashboard and choose “Manage Jenkins” and then “Manage 
Plugins” (or type http://<CIServer>:8080/pluginManager/? into your browser’s address 
bar) you can select from over 300 plug-ins currently available for Jenkins. One of them is 
called the “Jenkins Build Timeout Plugin” and it’s just what we need. Install that plugin to 
add a new option on the Job Configuration page called Build Environment (Figure 12). 

 

Figure 12: New options available after the Jenkins Build Timout Plugin is installed 

The plugin is nicely configurable, allowing us to specify an absolute time to abort the build, 
an elastic time based on how long previous builds took, or a “likely stuck” time based on 
some algorithms built into the plugin. Here I’ve chosen to say “Abort the build if it takes 
more than 150% of the time that the last 3 builds took; if there haven’t been 3 builds yet 
then abort after 2 minutes.”  

Now if I introduce an error into my code and try to build, I’ll get a cloudy icon indicating all 
is not well, but Jenkins will not hang. You can find the .ERR file in the workspace folder to 
see what’s causing the problem. 

 

Figure 13: A Failed Build 

Adding Build Actions 
Now that your build is scheduled and executing properly, you can add more build actions. 
The new actions can be sequenced either before or after the actual build by dragging the 
actions around the screen. There are over 300+ plugins available currently for Jenkins, but 
very few are applicable to Visual FoxPro. Though we are a bit limited as compared to some 



of the other development tools right now, though perhaps we can use VFPX to get our tools 
up to snuff.  Here are some ideas for build actions: 

E-Mail Notification 
Jenkins includes functionality to send emails when a build fails (Figure 14). This is useful 
when you’ve scheduled your builds to run automatically and aren’t keeping your eyes on 
the dashboard. 

 

Figure 14: Send email when a build fails 

Unit Testing 
Ideally you’ll want to run your unit tests before you actually build, and abort the build 
process if any of the unit tests fail. But FoxUnit, the de facto unit testing framework for 
Visual FoxPro, was not created with Continuous Integration in mind. It’s not callable from 
the command line to execute unit tests, and it cannot create the types of “console 
applications” necessary to write to STDOUT, so we’re in a bit of a quandary. 

Fortunately John Miller has started us down a road that will take care of this problem. 
Check out the code in the article referenced above. I haven’t quite gotten it working 
perfectly yet myself and so I can’t write as much as I’d hoped to on this topic, but I would 
welcome any contributions to the FoxUnit project in this direction. 

Code Analyst 
This VFPX tool runs a “sniff test” on the code to ensure it conforms to standards and is well-
written, based on built-in rules and rules you create. Current rules included with the 
project check your code for problems such as: 

• Are there any RETURN statements within a WITH /ENDWITH block? 

• Are you using CTOD() anywhere? (This doesn’t internationalize well) 

• Does each function have a RETURN? 

• And much more, plus you can write your own rules. 

Like FoxUnit, Code Analyst will need a wrapper in order to make it usable from a CI Server, 
but we have the talent in our community to do this.  

 



Deployment Tool 
This is the tool that copies your EXE to wherever it needs to go. It may be as simple as 
copying it onto a shared folder or as complex as creating a variety of Setup executables for 
different platforms, uploading them to a secure FTP site, and updating a web page with 
links that points to the latest versions. 

Continuous Integration servers usually come with functionality to deploy your EXE in the 
most common ways, but you may have unique needs that require you to use something 
special.  

For example you might run an InnoSetup script that bundles your files into a SETUP.EXE 
with auto-updating ability. That would be nice and fairly easy to integrate into CI, but it’s 
beyond the scope of this whitepaper. See Rick Borup’s whitepaper from a few years ago on 
using InnoSetup with Visual FoxPro, and then just add the Inno script as a Build Step after 
the project is built to create the SETUP file. 

Once you’ve include a deployment step into your CI cycle you’ve gone beyond Continuous 
Integration into the realm of Continuous Deployment. This is a logical step to automate and 
it creates some more possibilities and issues, such as where to deploy nightly builds vs. 
stable builds. 

And More 
Other development environments may include other checks to ensure code integrity before 
a project is deployed – tools for which no native VFP solution exists. That means there’s 
room for creative folks like you construct the tools, or customize an existing tool to do the 
job for us.  These tools might include: 

• Integration Testing: These are tests that make sure that your code works well with 
others, like the database, the web services, the mail server, etc. I’m not aware of any 
frameworks that are made specifically for FoxPro but many are adaptable. It would 
also be acceptable, though perhaps not “pure,” to write FoxUnit tests that are 
actually not strictly unit tests but also integration tests. 

• Functional Testing: These are tests for the User Interface of your system, rather 
than the business logic which is what Unit Testing is aimed at. 

• Load Testing: Tests how your application would fare when many users are hitting 
it at once. These sorts of tests spin up multiple instances of your app, often on 
multiple machines, to simulate real-world conditions. It’s amazing how some apps 
that work fine when the developer is testing things don’t perform as well under 
load. 

• Coverage Testing: These tests simulate paths through your code to see which code 
is getting nailed and which code may not be touched at all. They perform something 
similar to what would happen if you SET COVERAGE TO a file in the beginning of 

http://www.ita-software.com/papers/FT407_Borup_InnoSetup1.pdf


your application, ran it all day through every code path possible, and then ran the 
coverage analyzer afterwards.   

• So Much More: Take a look at the plugins page of Jenkins to see the plethora of 
options available to you. Want to Tweet when your build succeeds? Fire a growl 
notification? Make an entry in a database? Run a StyleCop on your HTML code? 
There’s so much more you can do with an extensible CI framework like Jenkins. 

 

Conclusion 
Attempting to integrate your Visual FoxPro solutions into a Continuous Integration process 
exposes the limitations of Visual FoxPro: the inability to create console apps, the binary 
source code, and the lack of a native deployment tool create difficulties for the developer. 
However given some patience and a few workarounds, we can take advantage of 
Continuous Integration. 

I’ve attempted to use as many VFPX projects in this session as possible, exposing 
opportunities for improving the utilities. I implore you, dear reader, to get involved. 
Throughout this whitepaper I’ve indicated several places where VFP could use a little more 
help to make Continuous Integration useful and easy for every programmer.   

I hope the concept of Continuous Integration, and the specifics of how to implement it into 
your Visual FoxPro Software Development Lifecycle, are much clearer to you for having 
read this whitepaper and/or attended my Southwest Fox session. This is a necessary 
process for serious developers to integrate into toolbox, because like any good tool it will 
make you more efficient and reduce errors. 

Happy coding, and may your continuous integration cycle forever be unbroken. 

 

Dedication 
More details about the individual VFPX tools used in this whitepaper are available in the 
recently published book VFPX: Open Source Treasure for the VFP Developer. Many thanks to 
the authors of those tools for creating the parts we needed to put together this entire 
system. 

John Miller was way ahead of his time, writing about pretty much this very topic way back 
in 2007. I came across his article when I was writing about Automated Build for the book 
mentioned above, but ironically had already forgotten about it when I was writing this. It 
was while rereading my own chapter in the VFPX book that I stumbled across my reference 
to his earlier article. This whitepaper restates, probably less elegantly, most of the same 
points he made way back then. For more information about this topic I encourage you to 
read his article. 



 

 

Copyright, 2013,  Eric Selje 


	A Typical Day in the Life of a VFP Programmer
	What is Continuous Integration?
	Continuous Integration Servers
	Commercial Offerings
	Free and Open Source


	A True Story
	Setting up a Continuous Integration Server
	Step 1: Use Source Control
	Serial Killer

	Step 2: Install Automated Build
	GenPJM

	Step 3: Set up Unit Testing Framework
	And More

	Final Step: Set up a Continuous Integration Framework

	Creating a Job in Jenkins
	Configuring Your Source Control
	Set Up the Build
	Failed Builds

	Adding Build Actions
	E-Mail Notification
	Unit Testing
	Code Analyst
	Deployment Tool
	And More


	Conclusion
	Dedication


